ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Field Driven Quantum Phase Transitions in Josephson Arrays

181   0   0.0 ( 0 )
 نشر من قبل Michael Gershenson
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the magnetic-field-driven quantum phase transitions in Josephson junction arrays with a large coordination number. The characteristic energies were extracted in both the superconducting and insulating phases by integrating the current-voltage characteristics over a voltage range 2eVleqk_B T. For the arrays with a relatively strong Josephson coupling, we observed duality between the energies in the superconducting and insulating phases. The arrays with a weaker Josephson coupling demonstrate an intermediate, bad metal regime in weak magnetic fields; this observation underlines the importance of vortex pinning at large scales and, presumably, emergent inhomogeneity in the presence of strong offset charge disorder.



قيم البحث

اقرأ أيضاً

We have studied the phase diagram of two capacitively coupled Josephson junction arrays with charging energy, $E_c$, and Josephson coupling energy, $E_J$. Our results are obtained using a path integral Quantum Monte Carlo algorithm. The parameter tha t quantifies the quantum fluctuations in the i-th array is defined by $alpha_iequiv frac{E_{{c}_i}}{E_{J_i}}$. Depending on the value of $alpha_i$, each independent array may be in the semiclassical or in the quantum regime: We find that thermal fluctuations are important when $alpha lesssim 1.5 $ and the quantum fluctuations dominate when $2.0 lesssim alpha $. We have extensively studied the interplay between vortex and charge dominated individual array phases. The two arrays are coupled via the capacitance $C_{{rm inter}}$ at each site of the lattices. We find a {it reentrant transition} in $Upsilon(T,alpha)$, at low temperatures, when one of the arrays is in the semiclassical limit (i.e. $alpha_{1}=0.5 $) and the quantum array has $2.0 leqalpha_{2} leq 2.5$, for the values considered for the interlayer capacitance. In addition, when $3.0 leq alpha_{2} < 4.0$, and for all the inter-layer couplings considered above, a {it novel} reentrant phase transition occurs in the charge degrees of freedom, i.e. there is a reentrant insulating-conducting transition at low temperatures. We obtain the corresponding phase diagrams and found some features that resemble those seen in experiments with 2D JJA.
The superconductor-insulator transition in ultrathin films of amorphous Bi was tuned by changing the film thickness, with and without an applied magnetic field. The first experimentally obtained phase diagram is mapped as a function of thickness and magnetic field in the T=0 limit. A finite size scaling analysis has been carried out to determine the critical exponent product vz, which was found to be 1.2 for the zero field transition, and 1.4 for the finite field transition. Both results are different from the exponents found for the magnetic field tuned transition in the same system, 0.7.
The influence of an external static magnetic field (up to 480 mT)on the structural properties of EuTiO$_3$ (ETO) polycrystalline samples was examined by powder XRD at the Elettra synchrotron facilities in the temperature range 100-300K. While the cub ic to tetragonal structural phase transition temperature in this magnetic field range remains almost unaffected, significant lattice effects appear at two characteristic temperatures (~200K and 250K), which becomes more pronounced at a critical threshold magnetic field. At ~200K a change in the sign of the magnetostriction is detected attributed to a modification of the local magnetic properties from intrinsic ferromagnetism to intrinsic antiferromagnetism. These data are a clear indication that strong spin-lattice interactions govern also the high temperature phase of ETO and trigger the appearance of magnetic domain formation and novel phase transitions
Josephson junction arrays can be used as quantum channels to transfer quantum information between distant sites. In this work we discuss simple protocols to realize state transfer with high fidelity. The channels do not require complicate gating but use the natural dynamics of a properly designed array. We investigate the influence of static disorder both in the Josephson energies and in the coupling to the background gate charges, as well as the effect of dynamical noise. We also analyze the readout process, and its backaction on the state transfer.
The tenfold classification of topological phases enumerates all strong topological phases for both clean and disordered systems. These strong topological phases are connected to the existence of robust edge states. However, in addition to the strong topological phases in the tenfold classification, there exist weak topological phases whose properties under disorder are less well understood. It is unknown if the weak topological indices can be generalized for arbitrary disorder, and the physical signatures of these indices is not known. In this paper, we study disordered models of the two dimensional weak AIII insulator. We demonstrate that the weak invariants can be defined at arbitrary disorder, and that these invariants are connected to the presence or absence of bound charge at dislocation sites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا