ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum fluctuations of the vacuum are both a surprising and fundamental phenomenon of nature. Understood as virtual photons flitting in and out of existence, they still have a very real impact, emph{e.g.}, in the Casimir effects and the lifetimes of atoms. Engineering vacuum fluctuations is therefore becoming increasingly important to emerging technologies. Here, we shape vacuum fluctuations using a mirror, creating regions in space where they are suppressed. As we then effectively move an artificial atom in and out of these regions, measuring the atomic lifetime tells us the strength of the fluctuations. The weakest fluctuation strength we observe is 0.02 quanta, a factor of 50 below what would be expected without the mirror, demonstrating that we can hide the atom from the vacuum.
34 - L. Tornberg , Sh. Barzanjeh , 2013
We analyze a direct parity measurement of the state of three superconducting qubits in circuit quantum electrodynamics. The parity is inferred from a homodyne measurement of the reflected/transmitted microwave radiation and the measurement is direct in the sense that the parity is measured without the need for any quantum circuit operations or for ancilla qubits. Qubits are coupled to two resonant cavity modes, allowing the steady state of the emitted radiation to satisfy the necessary conditions to act as a pointer state for the parity. However, the transient dynamics violates these conditions and we analyze this detrimental effect and show that it can be overcome in the limit of weak measurement signal. Our analysis shows that, with a moderate degree of post-selection, it is possible to achieve post-measurement states with fidelity of order 95%. We believe that this type of measurement could serve as a benchmark for future error-correction protocols in a scalable architecture.
The ability to nondestructively detect the presence of a single, traveling photon has been a long-standing goal in optics, with applications in quantum information and measurement. Realising such a detector is complicated by the fact that photon-phot on interactions are typically very weak. At microwave frequencies, very strong effective photon-photon interactions in a waveguide have recently been demonstrated. Here we show how this type of interaction can be used to realize a quantum nondemolition measurement of a single propagating microwave photon. The scheme we propose uses a chain of solid-state 3-level systems (transmons), cascaded through circulators which suppress photon backscattering. Our theoretical analysis shows that microwave-photon detection with fidelity around 90% can be realized with existing technologies.
We present a scheme for the dissipative preparation of an entangled steady state of two superconducting qubits in a circuit QED setup. Combining resonator photon loss, a dissipative process already present in the setup, with an effective two-photon m icrowave drive, we engineer an effective decay mechanism which prepares a maximally entangled state of the two qubits. This state is then maintained as the steady state of the driven, dissipative evolution. The performance of the dissipative state preparation protocol is studied analytically and verified numerically. In view of the experimental implementation of the presented scheme we investigate the effects of potential experimental imperfections and show that our scheme is robust to small deviations in the parameters. We find that high fidelities with the target state can be achieved both with state-of-the-art 3D, as well as with the more commonly used 2D transmons. The promising results of our study thus open a route for the demonstration of an entangled steady state in circuit QED.
We realize indirect partial measurement of a transmon qubit in circuit quantum electrodynamics by interaction with an ancilla qubit and projective ancilla measurement with a dedicated readout resonator. Accurate control of the interaction and ancilla measurement basis allows tailoring the measurement strength and operator. The tradeoff between measurement strength and qubit back-action is characterized through the distortion of a qubit Rabi oscillation imposed by ancilla measurement in different bases. Combining partial and projective qubit measurements, we provide the solid-state demonstration of the correspondence between a non-classical weak value and the violation of a Leggett-Garg inequality.
109 - A. Frisk Kockum , L. Tornberg , 2012
We analyze the backaction of homodyne detection and photodetection on superconducting qubits in circuit quantum electrodynamics. Although both measurement schemes give rise to backaction in the form of stochastic phase rotations, which leads to depha sing, we show that this can be perfectly undone provided that the measurement signal is fully accounted for. This result improves upon that of Phys. Rev. A, 82, 012329 (2010), showing that the method suggested can be made to realize a perfect two-qubit parity measurement. We propose a benchmarking experiment on a single qubit to demonstrate the method using homodyne detection. By analyzing the limited measurement efficiency of the detector and bandwidth of the amplifier, we show that the parameter values necessary to see the effect are within the limits of existing technology.
We analyze a two qubit parity measurement based on dispersive read-out in circuit quantum electrodynamics. The back-action on the qubits has two qualitatively different contributions. One is an unavoidable dephasing in one of the parity subspaces, ar ising during the transient time of switching on the measurement. The other part is a stochastic rotation of the phase in the same subspace, which persists during the whole measurement. The latter can be determined from the full measurement record, using the method of state estimation. Our main result is that the outcome of this phase determination process is {em independent} of the initial state in the state estimation procedure. The procedure can thus be used in a measurement situation, where the initial state is unknown. We discuss how this feed-back method can be used to achieve a high fidelity parity measurement for realistic values of the cavity-qubit coupling strength. Finally, we discuss the robustness of the feed-back procedure towards errors in the measurement record.
We propose methods for the preparation and entanglement detection of multi-qubit GHZ states in circuit quantum electrodynamics. Using quantum trajectory simulations appropriate for the situation of a weak continuous measurement, we show that the join t dispersive readout of several qubits can be utilized for the probabilistic production of high-fidelity GHZ states. When employing a nonlinear filter on the recorded homodyne signal, the selected states are found to exhibit values of the Bell-Mermin operator exceeding 2 under realistic conditions. We discuss the potential of the dispersive readout to demonstrate a violation of the Mermin bound, and present a measurement scheme avoiding the necessity for full detector tomography.
We present measurements of single-qubit gate errors for a superconducting qubit. Results from quantum process tomography and randomized benchmarking are compared with gate errors obtained from a double pi pulse experiment. Randomized benchmarking rev eals a minimum average gate error of 1.1+/-0.3% and a simple exponential dependence of fidelity on the number of gates. It shows that the limits on gate fidelity are primarily imposed by qubit decoherence, in agreement with theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا