ﻻ يوجد ملخص باللغة العربية
We present measurements of single-qubit gate errors for a superconducting qubit. Results from quantum process tomography and randomized benchmarking are compared with gate errors obtained from a double pi pulse experiment. Randomized benchmarking reveals a minimum average gate error of 1.1+/-0.3% and a simple exponential dependence of fidelity on the number of gates. It shows that the limits on gate fidelity are primarily imposed by qubit decoherence, in agreement with theory.
Quantum state tomography is an important tool in quantum information science for complete characterization of multi-qubit states and their correlations. Here we report a method to perform a joint simultaneous read-out of two superconducting qubits di
We present an example of quantum process tomography performed on a single solid state qubit. The qubit used is two energy levels of the triplet state in the Nitrogen-Vacancy defect in Diamond. Quantum process tomography is applied to a qubit which ha
The efficiency of the future devices for quantum information processing will be limited mostly by the finite decoherence rates of the individual qubits and quantum gates. Recently, substantial progress was achieved in enhancing the time within which
We present an example of quantum process tomography (QPT) performed on a single solid state qubit. The qubit used is two energy levels of the triplet state in the Nitrogen-Vacancy defect in Diamond. Quantum process tomography is applied to a qubit wh
The interference between repeated Landau-Zener transitions in a qubit swept through an avoided level crossing results in Stueckelberg oscillations in qubit magnetization. The resulting oscillatory patterns are a hallmark of the coherent strongly-driv