ترغب بنشر مسار تعليمي؟ اضغط هنا

157 - H. Zhang , D. Y. Tang , L. M. Zhao 2009
We report on the experimental observation of induced solitons in a passively mode-locked fiber ring laser with birefringence cavity. Due to the cross coupling between the two orthogonal polarization components of the laser, it was found that if a sol iton was formed along one cavity polarization axis, a weak soliton was also induced along the orthogonal polarization axis, and depending on the net cavity birefringence, the induced soliton could either have the same or different center wavelengths to that of the inducing soliton. Moreover, the induced soliton always had the same group velocity as that of the inducing soliton. They form a vector soliton in the cavity. Numerical simulations confirmed the experimental observations.
117 - D. Y. Tang , L. M. Zhao , B. Zhao 2009
We report results of numerical simulations on the multiple soliton generation and soliton energy quantization in a soliton fiber ring laser passively mode-locked by using the nonlinear polarization rotation technique. We found numerically that the fo rmation of multiple solitons in the laser is caused by a peak power limiting effect of the laser cavity. It is also the same effect that suppresses the soliton pulse collapse, an intrinsic feature of solitons propagating in the gain media, and makes the solitons stable in the laser. Furthermore, we show that the soliton energy quantization observed in the lasers is a natural consequence of the gain competition between the multiple solitons. Enlightened by the numerical result we speculate that the multi-soliton formation and soliton energy quantization observed in other types of soliton fiber lasers could have similar mechanism.
Direct generation of ultrashort, transform-limited pulses in a laser resonator is observed theoretically and experimentally. This constitutes a new type of ultrashort pulse generation in mode-locked lasers: in contrast to the well-known solitons (hyp erbolic secant like), dispersion-managed solitons (Gaussian-like), and parabolic pulses plus external compression, ultrashort pulse solutions to the nonlinear wave equations that describe pulse evolution in the laser cavity are observed. Stable ultrashort, transform-limited pulses exist with optical spectrum broader than the gain bandwidth of the amplifier, and this has practical application for other lasers.
130 - D. Y. Tang , B. Zhao , L. M. Zhao 2009
We have experimentally investigated the soliton interaction in a passively mode-locked fiber ring laser and revealed the existence of three types of strong soliton interaction: a global type of soliton interaction caused by the existence of unstable CW components; a local type of soliton interaction mediated through the radiative dispersive waves; and the direct soliton interaction. We found that the appearance of the various soliton operation modes observed in the passively mode locked fiber soliton lasers are the direct consequences of these three types of soliton interaction. The soliton interaction in the laser is further numerically simulated based on a pulse tracing technique. The numerical simulations confirmed the existence of the dispersive wave mediated soliton interaction and the direct soliton interaction. Furthermore, it was shown that the resonant dispersive waves mediated soliton interaction in the laser always has the consequence of causing random irregular relative soliton movement, and the experimentally observed states of bound solitons are caused by the direct soliton interaction. In particular, as the solitons generated in the laser could have a profile with long tails, the direct soliton interaction could extend to a soliton separation that is larger than 5 times of the soliton pulse width.
96 - L. M. Zhao , D. Y. Tang , 2009
We demonstrate self-started mode-locking in an Erbium-doped fiber ring laser by using the nonlinear polarization rotation mode-locking technique but without an isolator in cavity. We show that due to the intrinsic effective nonlinearity discriminatio n of the mode-locked pulse propagating along different cavity directions, the soliton operation of the laser is always unidirectional, and its features have no difference to that of the unidirectional lasers with an isolator in cavity.
158 - L. M. Zhao , D. Y. Tang , 2009
We report on the observation of bound states of gain-guided solitons (GGSs) in a dispersion-managed erbium-doped fiber laser operating in the normal net cavity dispersion regime. Despite of the fact that the GGS is a chirped soliton and there is stro ng pulse stretching and compression along the cavity in the laser, the bound solitons observed have a fixed pulse separation, which is invariant to the pump strength change. Numerical simulation confirmed the experimental observations.
131 - L. M. Zhao , D. Y. Tang , 2009
We report on the observation of various bound states of dispersion-managed (DM) solitons in a passively mode-locked Erbium-doped fiber ring laser at near zero net cavity group velocity dispersion (GVD). The generated DM solitons are characterized by their Gaussian-like spectral profile with no sidebands, which is distinct from those of the conventional solitons generated in fiber lasers with large net negative cavity GVD, of the parabolic pulses generated in fiber lasers with positive cavity GVD and negligible gain saturation and bandwidth limiting, and of the gain-guided solitons generated in fiber lasers with large positive cavity GVD. Furthermore, bound states of DM solitons with fixed soliton separations are also observed. We show that these bound solitons can function as a unit to form bound states themselves. Numerical simulations verified our experimental observations.
We report on large energy pulse generation in an erbium-doped fiber laser passively mode-locked with atomic layer graphene. Stable mode locked pulses with single pulse energy up to 7.3 nJ and pulse width of 415 fs have been directly generated from th e laser. Our results show that atomic layer graphene could be a promising saturable absorber for large energy mode locking.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا