We report on large energy pulse generation in an erbium-doped fiber laser passively mode-locked with atomic layer graphene. Stable mode locked pulses with single pulse energy up to 7.3 nJ and pulse width of 415 fs have been directly generated from the laser. Our results show that atomic layer graphene could be a promising saturable absorber for large energy mode locking.
A laser is based on the electromagnetic modes of its resonator, which provides the feedback required for oscillation. Enormous progress has been made in controlling the interactions of longitudinal modes in lasers with a single transverse mode. For e
xample, the field of ultrafast science has been built on lasers that lock many longitudinal modes together to form ultrashort light pulses. However, coherent superposition of many longitudinal and transverse modes in a laser has received little attention. The multitude of disparate frequency spacings, strong dispersions, and complex nonlinear interactions among modes greatly favor decoherence over the emergence of order. Here we report the locking of multiple transverse and longitudinal modes in fiber lasers to generate ultrafast spatiotemporal pulses. We construct multimode fiber cavities using graded-index multimode fiber (GRIN MMF). This causes spatial and longitudinal mode dispersions to be comparable. These dispersions are counteracted by strong intracavity spatial and spectral filtering. Under these conditions, we achieve spatiotemporal, or multimode (MM), mode-locking. A variety of other multimode nonlinear dynamical processes can also be observed. Multimode fiber lasers thus open new directions in studies of three-dimensional nonlinear wave propagation. Lasers that generate controllable spatiotemporal fields, with orders-of-magnitude increases in peak power over existing designs, should be possible. These should increase laser utility in many established applications and facilitate new ones.
We present a laser frequency comb based upon a 250 MHz mode-locked erbium-doped fiber laser that spans more than 300 terahertz of bandwidth, from 660 nm to 2000 nm. The system generates 1.2 nJ, 70 fs pulses at 1050 nm by amplifying the 1580 nm laser
light in Er:fiber, followed by nonlinear broadening to 1050 nm and amplification in Yb:fiber. Extension of the frequency comb into the visible is achieved by supercontinuum generation from the 1050 nm light. Comb coherence is verified with cascaded f-2f interferometry and comparison to a frequency stabilized laser.
We study experimentally and theoretically the interactions among ultrashort optical pulses in the soliton rain multiple-pulse dynamics of a fiber laser. The laser is mode-locked by a graphene saturable absorber fabricated using the mechanical transfe
r technique. Dissipative optical solitons aggregate into pulse bunches that exhibit complex behavior, which includes acceleration and bi-directional motion in the moving reference frame. The drift speed and direction depend on the bunch size and relative location in the cavity, punctuated by abrupt changes under bunch collisions. We model the main effects using the recently proposed noise-mediated pulse interaction mechanism, and obtain a good agreement with experiments. This highlights the major role of long-range Casimir-like interactions over dynamical pattern formations within ultrafast lasers.
Mode-locking is a process in which different modes of an optical resonator establish, through nonlinear interactions, stable synchronization. This self-organization underlies light sources that enable many modern scientific applications, such as ultr
afast and high-field optics and frequency combs. Despite this, mode-locking has almost exclusively referred to self-organization of light in a single dimension - time. Here we present a theoretical approach, attractor dissection, for understanding three-dimensional (3D) spatiotemporal mode-locking (STML). The key idea is to find, for each distinct type of 3D pulse, a specific, minimal reduced model, and thus to identify the important intracavity effects responsible for its formation and stability. An intuition for the results follows from the minimum loss principle, the idea that a laser strives to find the configuration of intracavity light that minimizes loss (maximizes gain extraction). Through this approach, we identify and explain several distinct forms of STML. These novel phases of coherent laser light have no analogues in 1D and are supported by experimental measurements of the three-dimensional field, revealing STML states comprising more than $10^7$ cavity modes. Our results should facilitate the discovery and understanding of new higher-dimensional forms of coherent light which, in turn, may enable new applications.
A mode locked fibre laser as a source of ultra-stable pulse train has revolutionised a wide range of fundamental and applied research areas by offering high peak powers, high repetition rates, femtosecond range pulse widths and a narrow linewidth. Ho
wever, further progress in linewidth narrowing seems to be limited by the complexity of the carrier-envelope phase control. Here for the first time we demonstrate experimentally and theoretically a new mechanism of resonance vector self-mode locking where tuning in-cavity birefringence leads to excitation of the longitudinal modes sidebands accompanied by the resonance phase locking of sidebands with the adjacent longitudinal modes. An additional resonance with acoustic phonons provides the repetition rate tunability and linewidth narrowing down to Hz range that drastically reduces the complexity of the carrier-envelope phase control and so will open the way to advance lasers in the context of applications in metrology, spectroscopy, microwave photonics, astronomy, and telecommunications.