ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a new technique designed to take full advantage of the high dimensionality (photometric, astrometric, temporal) of the DANCe survey to derive self-consistent and robust membership probabilities of the Pleiades cluster. We aim at developing a methodology to infer membership probabilities to the Pleiades cluster from the DANCe multidimensional astro-photometric data set in a consistent way throughout the entire derivation. The determination of the membership probabilities has to be applicable to censored data and must incorporate the measurement uncertainties into the inference procedure. We use Bayes theorem and a curvilinear forward model for the likelihood of the measurements of cluster members in the colour-magnitude space, to infer posterior membership probabilities. The distribution of the cluster members proper motions and the distribution of contaminants in the full multidimensional astro-photometric space is modelled with a mixture-of-Gaussians likelihood. We analyse several representation spaces composed of the proper motions plus a subset of the available magnitudes and colour indices. We select two prominent representation spaces composed of variables selected using feature relevance determination techniques based in Random Forests, and analyse the resulting samples of high probability candidates. We consistently find lists of high probability (p > 0.9975) candidates with $approx$ 1000 sources, 4 to 5 times more than obtained in the most recent astro-photometric studies of the cluster. The methodology presented here is ready for application in data sets that include more dimensions, such as radial and/or rotational velocities, spectral indices and variability.
Context. Discovery of new variability classes in large surveys using multivariate statistics techniques such as clustering, relies heavily on the correct understanding of the distribution of known classes as point processes in parameter space. Aims. Our objective is to analyze the correspondence between the classical stellar variability types and the clusters found in the distribution of light curve parameters and colour indices of stars in the CoRoT exoplanet sample. The final aim is to help in the identification on new types of variability by first identifying the well known variables in the CoRoT sample. Methods. We apply unsupervised classification algorithms to identify clusters of variable stars from modes of the probability density distribution. We use reference variability databases (Hipparcos and OGLE) as a framework to calibrate the clustering methodology. Furthermore, we use the results from supervised classification methods to interpret the resulting clusters. Results.We interpret the clusters in the Hipparcos and OGLE LMC databases in terms of large-amplitude radial pulsators in the classical instability strip and of various types of eclipsing binaries. The Hipparcos data also provide clear distributions for low-amplitude nonradial pulsators. We show that the preselection of targets for the CoRoT exoplanet programme results in a completely different probability density landscape than the OGLE data, the interpretation of which involves mainly classes of low-amplitude variability in main-sequence stars. Our findings will be incorporated to improve the supervised classification used in the CoRoT catalogue production, once the existence of new classes or subtypes will be confirmed from complementary spectroscopic observations.
We aim to extend and test the classifiers presented in a previous work against an independent dataset. We complement the assessment of the validity of the classifiers by applying them to the set of OGLE light curves treated as variable objects of unk nown class. The results are compared to published classification results based on the so-called extractor methods.Two complementary analyses are carried out in parallel. In both cases, the original time series of OGLE observations of the Galactic bulge and Magellanic Clouds are processed in order to identify and characterize the frequency components. In the first approach, the classifiers are applied to the data and the results analyzed in terms of systematic errors and differences between the definition samples in the training set and in the extractor rules. In the second approach, the original classifiers are extended with colour information and, again, applied to OGLE light curves. We have constructed a classification system that can process huge amounts of time series in negligible time and provide reliable samples of the main variability classes. We have evaluated its strengths and weaknesses and provide potential users of the classifier with a detailed description of its characteristics to aid in the interpretation of classification results. Finally, we apply the classifiers to obtain object samples of classes not previously studied in the OGLE database and analyse the results. We pay specific attention to the B-stars in the samples, as their pulsations are strongly dependent on metallicity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا