ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an R&D activity focused on the development of novel modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The modules consist of n-in-p pixel sensors, 100 or 200 $mu$m thick, produced at VTT (Finland) with an active edge technology, which considerably reduces the dead area at the periphery of the device. The sensors are interconnected with solder bump-bonding to the ATLAS FE-I3 and FE-I4 read-out chips, and characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements will be discussed for devices before and after irradiation up to a fluence of $5times 10^{15}$ eqcm. We will also report on the R&D activity to obtain Inter Chip Vias (ICVs) on the ATLAS read-out chip in collaboration with the Fraunhofer Institute EMFT. This step is meant to prove the feasibility of the signal transport to the newly created readout pads on the backside of the chips allowing for four side buttable devices without the presently used cantilever for wire bonding. The read-out chips with ICVs will be interconnected to thin pixel sensors, 75 $mu$m and 150 $mu$m thick, with the Solid Liquid Interdiffusion (SLID) technology, which is an alternative to the standard solder bump-bonding.
The R&D activity presented is focused on the development of new modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The performance after irradiation of n-in-p pixel sensors of different active thicknesses is studie d, together with an investigation of a novel interconnection technique offered by the Fraunhofer Institute EMFT in Munich, the Solid-Liquid-InterDiffusion (SLID), which is an alternative to the standard solder bump-bonding. The pixel modules are based on thin n-in-p sensors, with an active thickness of 75 um or 150 um, produced at the MPI Semiconductor Laboratory (MPI HLL) and on 100 um thick sensors with active edges, fabricated at VTT, Finland. Hit efficiencies are derived from beam test data for thin devices irradiated up to a fluence of 4e15 neq/cm^2. For the active edge devices, the charge collection properties of the edge pixels before irradiation is discussed in detail, with respect to the inner ones, using measurements with radioactive sources. Beyond the active edge sensors, an additional ingredient needed to design four side buttable modules is the possibility of moving the wire bonding area from the chip surface facing the sensor to the backside, avoiding the implementation of the cantilever extruding beyond the sensor area. The feasibility of this process is under investigation with the FE-I3 SLID modules, where Inter Chip Vias are etched, employing an EMFT technology, with a cross section of 3 um x 10 um, at the positions of the original wire bonding pads.
We present the results of the characterization of pixel modules composed of 75 um thick n-in-p sensors and ATLAS FE-I3 chips, interconnected with the SLID (Solid Liquid Inter-Diffusion) technology. This technique, developed at Fraunhofer-EMFT, is exp lored as an alternative to the bump-bonding process. These modules have been designed to demonstrate the feasibility of a very compact detector to be employed in the future ATLAS pixel upgrades, making use of vertical integration technologies. This module concept also envisages Inter-Chip-Vias (ICV) to extract the signals from the backside of the chips, thereby achieving a higher fraction of active area with respect to the present pixel module design. In the case of the demonstrator module, ICVs are etched over the original wire bonding pads of the FE-I3 chip. In the modules with ICVs the FE-I3 chips will be thinned down to 50 um. The status of the ICV preparation is presented.
244 - P. Weigell 2011
A new module concept for future ATLAS pixel detector upgrades is presented, where thin n-in-p silicon sensors are connected to the front-end chip exploiting the novel Solid Liquid Interdiffusion technique (SLID) and the signals are read out via Inter Chip Vias (ICV) etched through the front-end. This should serve as a proof of principle for future four-side buttable pixel assemblies for the ATLAS upgrades, without the cantilever presently needed in the chip for the wire bonding. The SLID interconnection, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It is characterized by a very thin eutectic Cu-Sn alloy and allows for stacking of different layers of chips on top of the first one, without destroying the pre-existing bonds. This paves the way for vertical integration technologies. Results of the characterization of the first pixel modules interconnected through SLID as well as of one sample irradiated to $2cdot10^{15}$, eqcm{} are discussed. Additionally, the etching of ICV into the front-end wafers was started. ICVs will be used to route the signals vertically through the front-end chip, to newly created pads on the backside. In the EMFT approach the chip wafer is thinned to (50--60),$mu$m.
An upgraded asymmetric e+e- flavor factory, SuperKEKB, is planned at KEK. It will deliver a luminosity of 8 x 10^35 cm^-2 s^-1, allowing precision measurements in the flavor sector which can probe new physics well beyond the scales accessible to dire ct observation. The increased luminosity also requires upgrades of the Belle detector. Of critical importance here is a new silicon pixel vertex tracker, which will significantly improve the decay vertex resolution. This new detector will consist of two detector layers close to the interaction point, using DEPFET pixel sensors with 50 um thick silicon in the active area.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا