ترغب بنشر مسار تعليمي؟ اضغط هنا

Using electron-spin-resonance (ESR) technique we investigate the magnetic structure of CuCrO2, quasi-two-dimensional antiferromagnet with weakly distorted triangular lattice. Resonance frequencies and the excitation conditions in CuCrO2 at low temper atures are well described in the frame of cycloidal spin structure, defined by two susceptibilities parallel and perpendicular to the spin plane and by a biaxial crystal-field anisotropy. In agreement with the calculations, the character of the eigenmodes changes drastically at the spin-flop transition. The splitting of the observed modes can be well attributed to the resonances from different domains. The domain structure in CuCrO2 can be controlled by annealing of the sample in magnetic field.
The entire magnetic phase diagram of the quasi two dimensional (2D) magnet on a distorted triangular lattice KFe(MoO4)2 is outlined by means of magnetization, specific heat, and neutron diffraction measurements. It is found that the spin network brea ks down into two almost independent magnetic subsystems. One subsystem is a collinear antiferromagnet that shows a simple spin-flop behavior in applied fields. The other is a helimagnet that instead goes through a series of exotic commensurate-incommensurate phase transformations. In the various phases one observes either true 3D order or quasi-2D order. The experimental findings are compared to theoretical predictions found in literature
The spin-liquid phase of two highly frustrated pyrochlore magnets Gd2Ti2O7 and Gd2Sn2O7 is probed using electron spin resonance in the temperature range 1.3 - 30 K. The deviation of the absorption line from the paramagnetic position u =gamma H obser ved in both compounds below the Curie-Weiss temperature Theta_CW ~ 10 K, suggests an opening up of a gap in the excitation spectra. On cooling to 1.3 K (which is above the ordering transition T_N ~ 1.0 K) the resonance spectrum is transformed into a wide band of excitations with the gap amounting to Delta ~ 26 GHz (1.2 K) in Gd2Ti2O7 and 18 GHz (0.8 K) in Gd2Sn2O7. The gaps increase linearly with the external magnetic field. For Gd2Ti2O7 this branch co-exists with an additional nearly paramagnetic line absent in Gd2Sn2O7. These low lying excitations with gaps, which are preformed in the spin-liquid state, may be interpreted as collective spin modes split by the single-ion anisotropy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا