ترغب بنشر مسار تعليمي؟ اضغط هنا

Co-existing chiral and collinear phases in a distorted triangular antiferromagnet

86   0   0.0 ( 0 )
 نشر من قبل Alexander Smirnov
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The entire magnetic phase diagram of the quasi two dimensional (2D) magnet on a distorted triangular lattice KFe(MoO4)2 is outlined by means of magnetization, specific heat, and neutron diffraction measurements. It is found that the spin network breaks down into two almost independent magnetic subsystems. One subsystem is a collinear antiferromagnet that shows a simple spin-flop behavior in applied fields. The other is a helimagnet that instead goes through a series of exotic commensurate-incommensurate phase transformations. In the various phases one observes either true 3D order or quasi-2D order. The experimental findings are compared to theoretical predictions found in literature

قيم البحث

اقرأ أيضاً

90 - S. Seki , N. Kida , S. Kumakura 2010
Terahertz time-domain spectroscopy was performed to directly probe the low-energy (1-5 meV) electrodynamics of triangular lattice antiferromagnets CuFe1-xGaxO2 (x = 0.00, 0.01, and 0.035). We discovered an electromagnon (electric-field-active magnon) excitation at 2.3 meV in the paraelectric up-up-down-down collinear magnetic phase, while this electromagnon vanishes in the ferroelectric helimagnetic phase. Anti-correlation with noncollinear magnetism excludes the exchange-striction mechanism as the origin of dynamical magnetoelectric coupling, and hence evidences the observation of spin-orbit coupling mediated electromagnon in the present compound.
We report a high-resolution neutron diffraction study of the crystal and magnetic structure of the orbitally-degenerate frustrated metallic magnet AgNiO2. At high temperatures the structure is hexagonal with a single crystallographic Ni site, low-spi n Ni3+ with spin-1/2 and two-fold orbital degeneracy, arranged in an antiferromagnetic triangular lattice with frustrated spin and orbital order. A structural transition occurs upon cooling below 365 K to a tripled hexagonal unit cell containing three crystallographically-distinct Ni sites with expanded and contracted NiO6 octahedra, naturally explained by spontaneous charge order on the Ni triangular layers. No Jahn-Teller distortions occur, suggesting that charge order occurs in order to lift the orbital degeneracy. Symmetry analysis of the inferred Ni charge order pattern and the observed oxygen displacement pattern suggests that the transition could be mediated by charge fluctuations at the Ni sites coupled to a soft oxygen optical phonon breathing mode. At low temperatures the electron-rich Ni sublattice (assigned to a valence close to Ni2+ with S = 1) orders magnetically into a collinear stripe structure of ferromagnetic rows ordered antiferromagnetically in the triangular planes. We discuss the stability of this uncommon spin order pattern in the context of an easy-axis triangular antiferromagnet with additional weak second neighbor interactions and interlayer couplings.
{alpha}-CaCr2O4 is a distorted triangular antiferromagnet. The magnetic Cr3+ ions which have spin-3/2 and interact with their nearest neighbors via Heisenberg direct exchange interactions, develop long-range magnetic order below T_N=42.6 K. Powder an d single-crystal neutron diffraction reveal a helical magnetic structure with ordering wavevector k=(0,~1/3,0) and angles close to 120{deg} between neighboring spins. Spherical neutron polarimetry unambiguously proves that the spins lie in the ac plane perpendicular to k. The magnetic structure is therefore that expected for an ideal triangular antiferromagnet where all nearest neighbor interactions are equal, in spite of the fact that {alpha}-CaCr2O4 is distorted with two inequivalent Cr3+ ions and four different nearest neighbor interactions. By simulating the magnetic order as a function of these four interactions it is found that the special pattern of interactions in {alpha}-CaCr2O4 stabilizes 120{deg} helical order for a large range of exchange interactions.
Non-collinear magnetic order arises for various reasons in several magnetic systems and exhibits interesting spin dynamics. Despite its ubiquitous presence, little is known of how magnons, otherwise stable quasiparticles, decay in these systems, part icularly in metallic magnets. Using inelastic neutron scattering, we examine the magnetic excitation spectra in a metallic non-collinear antiferromagnet CrB$_{2}$, in which Cr atoms form a triangular lattice and display incommensurate magnetic order. Our data show intrinsic magnon damping and continuum-like excitations that cannot be explained by linear spin wave theory. The intrinsic magnon linewidth $Gamma(q,E_{q})$ shows very unusual momentum dependence, which our analysis shows to originate from the combination of two-magnon decay and the Stoner continuum. By comparing the theoretical predictions with the experiments, we identify where in the momentum and energy space one of the two factors becomes more dominant. Our work constitutes a rare comprehensive study of the spin dynamics in metallic non-collinear antiferromagnets. It reveals, for the first time, definite experimental evidence of the higher-order effects in metallic antiferromagnets.
We study the triangular-lattice Ising model with dipolar interactions, inspired by its realisation in artificial arrays of nanomagnets. We show that a classical spin-liquid forms at intermediate temperatures, and that its behaviour can be tuned by te mperature and/or a small lattice distortion between a string Luttinger liquid and a domain-wall-network state. At low temperature there is a transition into a magnetically ordered phase, which can be first-order or continous with a crossover in the critical behaviour between Pokrovsky-Talapov and 2D-Ising universality. When the Pokrovsky-Talapov criticality dominates, the transition is essentially of the Kasteleyn type.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا