ﻻ يوجد ملخص باللغة العربية
The entire magnetic phase diagram of the quasi two dimensional (2D) magnet on a distorted triangular lattice KFe(MoO4)2 is outlined by means of magnetization, specific heat, and neutron diffraction measurements. It is found that the spin network breaks down into two almost independent magnetic subsystems. One subsystem is a collinear antiferromagnet that shows a simple spin-flop behavior in applied fields. The other is a helimagnet that instead goes through a series of exotic commensurate-incommensurate phase transformations. In the various phases one observes either true 3D order or quasi-2D order. The experimental findings are compared to theoretical predictions found in literature
Terahertz time-domain spectroscopy was performed to directly probe the low-energy (1-5 meV) electrodynamics of triangular lattice antiferromagnets CuFe1-xGaxO2 (x = 0.00, 0.01, and 0.035). We discovered an electromagnon (electric-field-active magnon)
We report a high-resolution neutron diffraction study of the crystal and magnetic structure of the orbitally-degenerate frustrated metallic magnet AgNiO2. At high temperatures the structure is hexagonal with a single crystallographic Ni site, low-spi
{alpha}-CaCr2O4 is a distorted triangular antiferromagnet. The magnetic Cr3+ ions which have spin-3/2 and interact with their nearest neighbors via Heisenberg direct exchange interactions, develop long-range magnetic order below T_N=42.6 K. Powder an
Non-collinear magnetic order arises for various reasons in several magnetic systems and exhibits interesting spin dynamics. Despite its ubiquitous presence, little is known of how magnons, otherwise stable quasiparticles, decay in these systems, part
We study the triangular-lattice Ising model with dipolar interactions, inspired by its realisation in artificial arrays of nanomagnets. We show that a classical spin-liquid forms at intermediate temperatures, and that its behaviour can be tuned by te