ترغب بنشر مسار تعليمي؟ اضغط هنا

The interplay between antiferromagnetic interaction and hole motion is capable of inducing intriguing conducting topological Haldane phases described by a finite non-local string order parameter. Here we show that these states of matter are captured by the one dimensional $t-J_z$ model which can be experimentally realized with dressed Rydberg atoms trapped onto a one dimensional optical lattice. In the sector with vanishing total magnetization exact Bethe ansatz calculations associated to bosonization technique allow to predict that both metallic and superconducting topological Haldane states can be achieved. With the addition of an appropriate magnetic field the system enters in a domain wall structure with finite total magnetization. In this regime conducting topological Haldane states are confined in domains separated by regions where fully polarized Luttinger liquid occurs. A procedure to dynamically stabilize such Haldane topological phases starting from a confined Ising state is also described
Activating transitions between a set of atomic internal states has emerged as an elegant scheme by which lattice models can be designed in ultracold atomic gases. In this approach, the internal states can be viewed as fictitious lattice sites defined along a synthetic dimension, hence offering a powerful method by which the spatial dimensionality of the system can be extended. Inter-particle collisions generically lead to infinite-range interactions along the synthetic dimensions, which a priori precludes the design of Bose-Hubbard-type models featuring on-site interactions. In this article, we solve this obstacle by introducing a protocol that realizes strong and tunable on-site interactions along an atomic synthetic dimension. Our scheme is based on pulsing strong intra-spin interactions in a fast and periodic manner, hence realizing the desired on-site interactions in a digital (Trotterized) manner. We explore the viability of this protocol by means of numerical calculations, which we perform on various examples that are relevant to ultracold-atom experiments. This general method, which could be applied to various atomic species by means of fast-response protocols based on Fano-Feshbach resonances, opens the route for the exploration of strongly-correlated matter in synthetic dimensions.
The Motzkin and Fredkin quantum spin chains are described by frustration-free Hamiltonians recently introduced and studied because of their anomalous behaviors in the correlation functions and in the entanglement properties. In this paper we analyze their quantum dynamical properties, focusing in particular on the time evolution of the excitations driven by a quantum quench, looking at the correlations functions of spin operators defined along different directions, and discussing the results in relation with the cluster decomposition property.
We show that the interplay between antiferromagnetic interaction and hole motion gives rise to a topological superconducting phase. This is captured by the one dimensional anisotropic $t-J$ model which can be experimentally achieved with ultracold po lar molecules trapped onto an optical lattice. As a function of the anisotropy strength we find that different quantum phases appear, ranging from a gapless Luttinger liquid to spin gapped conducting and superconducting regimes. In presence of appropriate $z$-anisotropy, we also prove that a phase characterized by non-trivial topological order takes place. The latter is described uniquely by a finite non local string parameter and presents robust edge spin fractionalization. These results allow to explore quantum phases of matter where topological superconductivity is induced by the interaction.
We analyze the static and dynamical properties of a one-dimensional topological lattice, the fermionic Su-Schrieffer-Heeger model, in the presence of on-site interactions. Based on a study of charge and spin correlation functions, we elucidate the na ture of the topological edge modes, which depending on the sign of the interactions, either display particles of opposite spin on opposite edges, or a pair and a holon. This study of correlation functions also highlights the strong entanglement that exists between the opposite edges of the system. This last feature has remarkable consequences upon subjecting the system to a quench, where an instantaneous edge-to-edge signal appears in the correlation functions characterizing the edge modes. Besides, other correlation functions are shown to propagate in the bulk according to the light-cone imposed by the Lieb-Robinson bound. Our study reveals how one-dimensional lattices exhibiting entangled topological edge modes allow for a non-trivial correlation spreading, while providing an accessible platform to detect spin-charge separation using state-of-the-art experimental techniques.
Motzkin spin chains are frustration-free models whose ground-state is a combination of Motzkin paths. The weight of such path contributions can be controlled by a deformation parameter t. As a function of the latter these models, beside the formation of domain wall structures, exhibit a Berezinskii-Kosterlitz-Thouless phase transition for t=1 and gapped Haldane topological orders with constant decay of the string order parameters for t < 1. By means of numerical calculations we show that the topological properties of the Haldane phases depend on the spin value. This allows to classify different kinds of hidden antiferromagnetic Haldane gapped regimes associated to nontrivial features like symmetry-protected topological order. Our results from one side allow to clarify the physical properties of Motzkin frustration-free chains and from the other suggest them as a new interesting and paradigmatic class of local spin Hamiltonians.
The Extended Fermi-Hubbard model is a rather studied Hamiltonian due to both its many applications and a rich phase diagram. Here we prove that all the phase transitions encoded in its one dimensional version are detectable via non-local operators re lated to charge and spin fluctuations. The main advantage in using them is that, in contrast to usual local operators, their asymptotic average value is finite only in the appropriate gapped phases. This makes them powerful and accurate probes to detect quantum phase transitions. Our results indeed confirm that they are able to properly capture both the nature and the location of the transitions. Relevantly, this happens also for conducting phases with a spin gap, thus providing an order parameter for the identification of superconducting and paired superfluid phases
126 - L. Barbiero , L. DellAnna 2016
We study the real time evolution of the correlation functions in a globally quenched interacting one dimensional lattice system by means of time adaptive density matrix renormalization group. We find a clear light-cone behavior quenching the repulsiv e interaction from the gapped density wave regime. The spreading velocity increases with the final values of the interaction and then saturates at a certain finite value. In the case of a Luttinger liquid phase as the initial state, for strong repulsive interaction quenches, a more complex dynamics occurs as a result of bound state formations. From the other side in the attractive regime, depending on where connected correlation functions are measured, one can observe a delay in the starting time evolution and a coexistence of ballistic and localized signals.
The absence of energy dissipation leads to an intriguing out-of-equilibrium dynamics for ultracold polar gases in optical lattices, characterized by the formation of dynamically-bound on-site and inter-site clusters of two or more particles, and by a n effective blockade repulsion. These effects combined with the controlled preparation of initial states available in cold gases experiments can be employed to create interesting out-of-equilibrium states. These include quasi-equilibrated effectively repulsive 1D gases for attractive dipolar interactions and dynamically-bound crystals. Furthermore, non-equilibrium polar lattice gases can offer a promising scenario for the study of many-body localization in the absence of quenched disorder. This fascinating out-of-equilibrium dynamics for ultra-cold polar gases in optical lattices may be accessible in on-going experiments.
We investigate the effect of dipolar interactions in one-dimensional systems in connection with the possibility of observing exotic many-body effects with trapped atomic and molecular dipolar gases. By combining analytical and numerical methods, we s how how the competition between short- and long-range interactions gives rise to frustrating effects which lead to the stabilization of spontaneously dimerized phases characterized by a bond-ordering. This genuine quantum order is sharply distinguished from Mott and spin-density wave phases, and can be unambiguously probed by measuring non local order parameters in-situ imaging techniques.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا