ﻻ يوجد ملخص باللغة العربية
The absence of energy dissipation leads to an intriguing out-of-equilibrium dynamics for ultracold polar gases in optical lattices, characterized by the formation of dynamically-bound on-site and inter-site clusters of two or more particles, and by an effective blockade repulsion. These effects combined with the controlled preparation of initial states available in cold gases experiments can be employed to create interesting out-of-equilibrium states. These include quasi-equilibrated effectively repulsive 1D gases for attractive dipolar interactions and dynamically-bound crystals. Furthermore, non-equilibrium polar lattice gases can offer a promising scenario for the study of many-body localization in the absence of quenched disorder. This fascinating out-of-equilibrium dynamics for ultra-cold polar gases in optical lattices may be accessible in on-going experiments.
One-dimensional polar gases in deep optical lattices present a severely constrained dynamics due to the interplay between dipolar interactions, energy conservation, and finite bandwidth. The appearance of dynamically-bound nearest-neighbor dimers enh
In this paper we first compute the out-of-time-order correlators (OTOC) for both a phenomenological model and a random-field XXZ model in the many-body localized phase. We show that the OTOC decreases in power law in a many-body localized system at t
Understanding quantum thermalization through entanglement build-up in isolated quantum systems addresses fundamental questions on how unitary dynamics connects to statistical physics. Here, we study the spin dynamics and approach towards local therma
Motivated by the question of whether disorder is a prerequisite for localization to occur in quantum many-body systems, we study a frustrated one-dimensional spin chain, which supports localized many-body eigenstates in the absence of disorder. When
In a many-body localized (MBL) quantum system, the ergodic hypothesis breaks down completely, giving rise to a fundamentally new many-body phase. Whether and under which conditions MBL can occur in higher dimensions remains an outstanding challenge b