ترغب بنشر مسار تعليمي؟ اضغط هنا

An observation of the anisotropy of dark matter interactions in a direction-sensitive detector would provide decisive evidence for the discovery of galactic dark matter. Directional information would also provide a crucial input to understanding its distribution in the local Universe. Most of the existing directional dark matter detectors utilize particle tracking methods in a low-pressure gas time projection chamber. These low pressure detectors require excessively large volumes in order to be competitive in the search for physics beyond the current limit. In order to avoid these volume limitations, we consider a novel proposal, which exploits a columnar recombination effect in a high-pressure gas time projection chamber. The ratio of scintillation to ionization signals observed in the detector carries the angular information of the particle interactions. In this paper, we investigate the sensitivity of a future directional detector focused on the proposed high-pressure Xenon gas time projection chamber. We study the prospect of detecting an anisotropy in the dark matter velocity distribution. We find that tens of events are needed to exclude an isotropic distribution of dark matter interactions at 95% confidence level in the most optimistic case with head-to-tail information. However, one needs at least 10-20 times more events without head-to-tail information for light dark matter below 50 GeV. For an intermediate mass range, we find it challenging to observe an anisotropy of the dark matter distribution. Our results also show that the directional information significantly improves precision measurements of dark matter mass and the elastic scattering cross section for a heavy dark matter.
A very light (GeV scale) dark gauge boson ($Z$) is a recently highlighted hypothetical particle that can address some astrophysical anomalies as well as the $3.6 sigma$ deviation in the muon $g$-2 measurement. We suggest top quark decays as a venue t o search for light dark force carriers at the LHC. Such $Z$s can be easily boosted, and they can decay into highly collimated leptons (lepton-jet) with large branching ratio. We investigate a scenario where a top quark decays to $b W$ accompanied by one or multiple dark force carriers and find that such a scenario could be easily probed at the early stage of LHC Run 2.
Discovery of a Higgs boson and precise measurements of its properties open a new window to test physics beyond the standard model. Models with Universal Extra Dimensions are not exception. Kaluza-Klein excitations of the standard model particles cont ribute to the production and decay of the Higgs boson. In particular, the parameters associated with third generation quarks are constrained by Higgs data, which are relatively insensitive to other searches often involving light quarks and leptons. We investigate implications of the 126 GeV Higgs in Next-to-Minimal Universal Extra Dimensions, and show that boundary terms and bulk masses allow a lower compactification scale as compared to in Minimal Universal Extra Dimensions.
48 - Kyoungchul Kong 2013
We review various theoretical methods for measuring dark matter properties at the Large Hadron Collider.
We present updated results on the complementarity between high-energy colliders and dark matter direct detection experiments in the context of Universal Extra Dimensions (UED). In models with relatively small mass splittings between the dark matter c andidate and the rest of the (colored) spectrum, the collider sensitivity is diminished, but direct detection rates are enhanced. UED provide a natural framework to study such mass degeneracies. We discuss the detection prospects for the KK photon $gamma_1$ and the KK $Z$-boson $Z_1$, combining the expected LHC reach with cosmological constraints from WMAP/Planck, and the sensitivity of current or planned direct detection experiments. Allowing for general mass splittings, neither colliders, nor direct detection experiments by themselves can explore all of the relevant KK dark matter parameter space. Nevertheless, they probe different parameter space regions, and the combination of the two types of constraints can be quite powerful.
We present a general model with universal extra dimensions in the presence of the bulk fermion masses and boundary localized kinetic terms, which are generically allowed by symmetries of five dimensional gauge theory. We provide a comprehensive analy sis for a general UED model, including Kaluza-Klein mass spectra, their interactions with the SM particles, and constraints from LHC, electroweak tests, and dark matter experiments. Finally we show current bounds on the size of allowed universal bulk mass and universal brane-localized terms.
91 - Kyoungchul Kong 2012
This note summarizes a pedagogical tutorial on CalcHEP and PYTHIA that was given at TASI 2011 program.
In models with extra dimensions, vectorlike Dirac masses for fermion fields are generically allowed. These masses are independent of electroweak symmetry breaking and do not contribute to the known masses for the quarks and leptons. They control the profile of the bulk wave functions, the mass spectra of Kaluza-Klein modes, and interactions that could be tested in experiments. In this article, we study the effects of bulk masses in electroweak precision measurements and in dark matter and collider searches, to set bounds on the bulk mass parameters in models with a flat universal extra dimension, namely, Split-UED. We find the current bound on the universal bulk-mass to be smaller than (0.2-0.3)/R, where R is the radius of the extra dimension. Similar but slightly relaxed bounds are obtained in the non-universal bulk mass case. The LHC is expected to play an important role in constraining the remaining parameter space.
In theories with Universal Extra-Dimensions (UED), the gamma_1 particle, first excited state of the hypercharge gauge boson, provides an excellent Dark Matter (DM) candidate. Here we use a modified version of the SuperBayeS code to perform a Bayesian analysis of the minimal UED scenario, in order to assess its detectability at accelerators and with DM experiments. We derive in particular the most probable range of mass and scattering cross sections off nucleons, keeping into account cosmological and electroweak precision constraints. The consequences for the detectability of the gamma_1 with direct and indirect experiments are dramatic. The spin-independent cross section probability distribution peaks at ~ 10^{-11} pb, i.e. below the sensitivity of ton-scale experiments. The spin-dependent cross-section drives the predicted neutrino flux from the center of the Sun below the reach of present and upcoming experiments. The only strategy that remains open appears to be direct detection with ton-scale experiments sensitive to spin-dependent cross-sections. On the other hand, the LHC with 1 1/fb of data should be able to probe the current best-fit UED parameters.
We consider SUSY-like missing energy events at hadron colliders and critically examine the common assumption that the missing energy is the result of two identical missing particles. In order to experimentally test this hypothesis, we generalize the subsystem MT2 variable to the case of asymmetric event topologies, where the two SUSY decay chains terminate in different children particles. In this more general approach, the endpoint MT2max of the MT2 distribution now gives the mass Mp(Mc(a),Mc(b)) of the parent particle as a function of two input children masses Mc(a) and Mc(b). We propose two methods for an independent determination of the individual children masses Mc(a) and Mc(b). First, in the presence of upstream transverse momentum P(UTM) the corresponding function Mp(Mc(a),Mc(b),P(UTM)) is independent of P(UTM) at precisely the right values of the children masses. Second, the previously discussed MT2 kink is now generalized to a ridge on the 2-dimensional surface Mp(Mc(a),Mc(b)). As we show in several examples, quite often there is a special point along that ridge which marks the true values of the children masses. Our results allow collider experiments to probe a multi-component dark matter sector directly and without any theoretical prejudice.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا