ترغب بنشر مسار تعليمي؟ اضغط هنا

Global fits of the Minimal Universal Extra Dimensions scenario

73   0   0.0 ( 0 )
 نشر من قبل Roberto Trotta
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In theories with Universal Extra-Dimensions (UED), the gamma_1 particle, first excited state of the hypercharge gauge boson, provides an excellent Dark Matter (DM) candidate. Here we use a modified version of the SuperBayeS code to perform a Bayesian analysis of the minimal UED scenario, in order to assess its detectability at accelerators and with DM experiments. We derive in particular the most probable range of mass and scattering cross sections off nucleons, keeping into account cosmological and electroweak precision constraints. The consequences for the detectability of the gamma_1 with direct and indirect experiments are dramatic. The spin-independent cross section probability distribution peaks at ~ 10^{-11} pb, i.e. below the sensitivity of ton-scale experiments. The spin-dependent cross-section drives the predicted neutrino flux from the center of the Sun below the reach of present and upcoming experiments. The only strategy that remains open appears to be direct detection with ton-scale experiments sensitive to spin-dependent cross-sections. On the other hand, the LHC with 1 1/fb of data should be able to probe the current best-fit UED parameters.

قيم البحث

اقرأ أيضاً

Discovery of a Higgs boson and precise measurements of its properties open a new window to test physics beyond the standard model. Models with Universal Extra Dimensions are not exception. Kaluza-Klein excitations of the standard model particles cont ribute to the production and decay of the Higgs boson. In particular, the parameters associated with third generation quarks are constrained by Higgs data, which are relatively insensitive to other searches often involving light quarks and leptons. We investigate implications of the 126 GeV Higgs in Next-to-Minimal Universal Extra Dimensions, and show that boundary terms and bulk masses allow a lower compactification scale as compared to in Minimal Universal Extra Dimensions.
We study the physics of Kaluza-Klein (KK) top quarks in the framework of a non-minimal Universal Extra Dimension (nmUED) with an orbifolded (S1/Z2) flat extra spatial dimension in the presence of brane-localized terms (BLTs). In general, BLTs affect the masses and the couplings of the KK excitations in a non-trivial way including those for the KK top quarks. On top of that, BLTs also influence the mixing of the top quark chiral states at each KK level and trigger mixings among excitations from different levels with identical KK parity (even or odd). The latter phenomenon of mixing of KK levels is not present in the popular UED scenario known as the minimal UED (mUED) at the tree level. Of particular interest are the mixings among the KK top quarks from level `0 and level `2 (driven by the mass of the Standard Model (SM) top quark). These open up new production modes in the form of single production of a KK top quark and the possibility of its direct decays to Standard Model (SM) particles leading to rather characteristic signals at the colliders. Experimental constraints and the restrictions they impose on the nmUED parameter space are discussed. The scenario is implemented in MadGraph 5 by including the quark, lepton, the gauge-boson and the Higgs sectors up to the second KK level. A few benchmark scenarios are chosen for preliminary studies of the decay patterns of the KK top quarks and their production rates at the LHC in various different modes. Recast of existing experimental analyzes in scenarios having similar states is found to be not so straightforward for the KK top quarks of the nmUED scenario under consideration.
We discuss prospects of the $Z$ search at the LHC in non-minimal Universal Extra Dimensions with tree-level brane-local terms in five dimensions. In this scenario, we find two major differences from the usual $Z$ physics: (i) two $Z$ candidates close -by in mass exist; (ii) the effective couplings to the SM fermions could be very large due to drastic overlapping of their profiles along the extra dimension. To evaluate the actual situation precisely, we reconsider the important issues of resonant processes, i.e., treatment of resonant propagators and including interference effects.
We consider the universal extra dimensions scenario of Appelquist, Cheng, and Dobrescu, in which all of the SM fields propagate into one extra compact dimension, estimated therein to be as large as $sim (350$ GeV$)^{-1}$. Tree-level KK number conserv ation dictates that the associated KK excitations can not be singly produced. We calculate the cross sections for the direct production of KK excitations of the gluon, $gs$, and two distinct towers of quarks, qs and $qt$, in proton-antiproton collisions at the Tevatron Run I and II energies in addition to proton-proton collisions at the Large Hadron Collider energy. The experimental signatures for these processes depend on the stability of the lowest-lying KK excitations of the gluons and light quarks. We find that the Tevatron Run I mass bound for KK quark and gluon final states is about 350--400 GeV, while Run II can push this up to 450--500 GeV at its initial luminosity and 500--550 GeV if the projected final luminosity is reached. The LHC can probe much further: The LHC will either discover UED KK excitations of quarks and gluons or extend the mass limit to about 3 TeV.
The minimal Universal Extra Dimension scenario is highly constrained owing to opposing constraints from the observed relic density on the one hand, and the non-observation of new states at the LHC on the other. Simple extensions in five-dimensions ca n only postpone the inevitable. Here, we propose a six-dimensional alternative with the key feature being that the SM quarks and leptons are localized on orthogonal directions whereas gauge bosons traverse the entire bulk. Several different realizations of electroweak symmetry breaking are possible, while maintaining agreement with low energy observables. This model is not only consistent with all the current constraints opposing the minimal Universal Extra Dimension scenario but also allows for a multi-TeV dark matter particle without the need for any fine-tuning. In addition, it promises a plethora of new signatures at the LHC and other future experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا