ترغب بنشر مسار تعليمي؟ اضغط هنا

We address the problem of Dirac fermions interacting with longitudinal phonons. A gap in the spectrum of fermions leads to the emergence of the Chern--Simons excitations in the spectrum of phonons. We study the effect of those excitations on observab le quantities: the phonon dispersion, the phonon spectral density, and the Hall conductivity.
We investigate the finite-size scaling behavior of the conductivity in a two-dimensional Dirac electron gas within a chiral sigma model. Based on the fact that the conductivity is a function of system size times scattering rate, we obtain a two-param eter scaling flow toward a finite fixed point. The latter is the minimal conductivity of the infinite system. Depending on boundary conditions, we also observe unstable fixed points with conductivities much larger than the experimentally observed values, which may account for results found in some numerical simulations. By including a spectral gap we extend our scaling approach to describe a metal-insulator transition.
We analyze the transformation from insulator to metal induced by thermal fluctuations within the Falicov-Kimball model. Using the Dynamic Mean Field Theory (DMFT) formalism on the Bethe lattice we find rigorously the temperature dependent Density of States ($DOS$) at half filling in the limit of high dimensions. At zero temperature (T=0) the system is ordered to form the checkerboard pattern and the $DOS$ has the gap $Delta$ at the Fermi level $varepsilon_F=0$, which is proportional to the interaction constant $U$. With an increase of $T$ the $DOS$ evolves in various ways that depend on $U$. For $U>U_{cr}$ the gap persists for any $T$ (then $Delta >0$), so the system is always an insulator. However, if $U < U_{cr}$, two additional subbands develop inside the gap. They become wider with increasing $T$ and at a certain $U$-dependent temperature $T_{MI}$ they join with each other at $varepsilon_F$. Since above $T_{MI}$ the $DOS$ is positive at $varepsilon_F$, we interpret $T_{MI}$ as the transformation temperature from insulator to metal. It appears, that $T_{MI}$ approaches the order-disorder phase transition temperature $T_{O-DO}$ when $U$ is close to 0 or $ U_{cr}$, but $T_{MI}$ is substantially lower than $T_{O-DO}$ for intermediate values of $U$. Having calculated the temperature dependent $DOS$ we study thermodynamic properties of the system starting from its free energy $F$. Then we find how the order parameter $d$ and the gap $Delta $ change with $T$ and we construct the phase diagram in the variables $T$ and $U$, where we display regions of stability of four different phases: ordered insulator, ordered metal, disordered insulator and disordered metal. Finally, we use a low temperature expansion to demonstrate the existence of a nonzero DOS at a characteristic value of U on a general bipartite lattice.
The conductivity of an electron gas can be alternatively calculated either from the current--current or from the density--density correlation function. Here, we compare these two frequently used formulations of the Kubo formula for the two--dimension al Dirac electron gas by direct evaluations for several special cases. Assuming the presence of weak disorder we investigate perturbatively both formulas at and away from the Dirac point. While to zeroth order in the disorder amplitude both formulations give identical results, with some very strong assumptions though, they show significant discrepancies already in first order. At half filling we evaluate all second order diagrams. Virtually none of the topologically identical diagrams yield the same corrections for both formulations. We conclude that a direct comparison of conductivities of disordered system calculated in both formulas is not possible.
We investigate the scaling properties of the recently acquired fermionic non--linear $sigma$--model which controls gapless diffusive modes in a two--dimensional disordered system of Dirac electrons beyond charge neutrality. The transport on large sca les is governed by a novel renormalizable nonlocal field theory. For zero mean random gap, it is characterized by the absence of a dynamic gap generation and a scale invariant diffusion coefficient. The $beta$ function of the DC conductivity, computed for this model, is in perfect agreement with numerical results obtained previously.
We study two lattice models, the honeycomb lattice (HCL) and a special square lattice (SQL), both reducing to the Dirac equation in the continuum limit. In the presence of disorder (gaussian potential disorder and random vector potential), we investi gate the behaviour of the density of states (DOS) numerically and analytically. While an upper bound can be derived for the DOS on the SQL at the Dirac point, which is also confirmed by numerical calculations, no such upper limit exists for the HCL in the presence of random vector potential. A careful investigation of the lowest eigenvalues indeed indicate, that the DOS can possibly be divergent at the Dirac point on the HCL. In spite of sharing a common continuum limit, these lattice models exhibit different behaviour.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا