ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the analogy between the renormalization group (RG) and deep neural networks, wherein subsequent layers of neurons are analogous to successive steps along the RG. In particular, we quantify the flow of information by explicitly computin g the relative entropy or Kullback-Leibler divergence in both the one- and two-dimensional Ising models under decimation RG, as well as in a feedforward neural network as a function of depth. We observe qualitatively identical behavior characterized by the monotonic increase to a parameter-dependent asymptotic value. On the quantum field theory side, the monotonic increase confirms the connection between the relative entropy and the c-theorem. For the neural networks, the asymptotic behavior may have implications for various information maximization methods in machine learning, as well as for disentangling compactness and generalizability. Furthermore, while both the two-dimensional Ising model and the random neural networks we consider exhibit non-trivial critical points, the relative entropy appears insensitive to the phase structure of either system. In this sense, more refined probes are required in order to fully elucidate the flow of information in these models.
Low-energy dynamics of many-body fracton excitations necessary to describe topological defects should be governed by a novel type of hydrodynamic theory. We use a Poisson bracket approach to systematically derive hydrodynamic equations from conservat ion laws of scalar theories with fracton excitations. We study two classes of theories. In the first class we introduce a general action for a scalar with a shift symmetry linear in the spatial coordinates, while the second class serves as a toy model for disclinations and dislocations propagating along the Burgers vector. We apply our construction to study hydrodynamic fluctuations around equilibrium states and derive the dispersion relations of hydrodynamic modes.
We develop a new heat kernel method that is suited for a systematic study of the renormalization group flow in Horava gravity (and in Lifshitz field theories in general). This method maintains covariance at all stages of the calculation, which is ach ieved by introducing a generalized Fourier transform covariant with respect to the nonrelativistic background spacetime. As a first test, we apply this method to compute the anisotropic Weyl anomaly for a (2+1)-dimensional scalar field theory around a z=2 Lifshitz point and corroborate the previously found result. We then proceed to general scalar operators and evaluate their one-loop effective action. The covariant heat kernel method that we develop also directly applies to operators with spin structures in arbitrary dimensions.
We study the quantum properties of a Galilean-invariant abelian gauge theory coupled to a Schrodinger scalar in 2+1 dimensions. At the classical level, the theory with minimal coupling is obtained from a null-reduction of relativistic Maxwell theory coupled to a complex scalar field in 3+1 dimensions and is closely related to the Galilean electromagnetism of Le-Bellac and Levy-Leblond. Due to the presence of a dimensionless, gauge-invariant scalar field in the Galilean multiplet of the gauge-field, we find that at the quantum level an infinite number of couplings is generated. We explain how to handle the quantum corrections systematically using the background field method. Due to a non-renormalization theorem, the beta function of the gauge coupling is found to vanish to all orders in perturbation theory, leading to a continuous family of fixed points where the non-relativistic conformal symmetry is preserved.
Motivated by the increasing connections between information theory and high-energy physics, particularly in the context of the AdS/CFT correspondence, we explore the information geometry associated to a variety of simple systems. By studying their Fi sher metrics, we derive some general lessons that may have important implications for the application of information geometry in holography. We begin by demonstrating that the symmetries of the physical theory under study play a strong role in the resulting geometry, and that the appearance of an AdS metric is a relatively general feature. We then investigate what information the Fisher metric retains about the physics of the underlying theory by studying the geometry for both the classical 2d Ising model and the corresponding 1d free fermion theory, and find that the curvature diverges precisely at the phase transition on both sides. We discuss the differences that result from placing a metric on the space of theories vs. states, using the example of coherent free fermion states. We compare the latter to the metric on the space of coherent free boson states and show that in both cases the metric is determined by the symmetries of the corresponding density matrix. We also clarify some misconceptions in the literature pertaining to different notions of flatness associated to metric and non-metric connections, with implications for how one interprets the curvature of the geometry. Our results indicate that in general, caution is needed when connecting the AdS geometry arising from certain models with the AdS/CFT correspondence, and seek to provide a useful collection of guidelines for future progress in this exciting area.
We compute the holographic entanglement entropy and subregion complexity of spherical boundary subregions in the uncharged and charged AdS black hole backgrounds, with the textbf{change} in these quantities being defined with respect to the pure AdS result. This calculation is done perturbatively in the parameter $frac{R}{z_{rm h}}$, where $z_{rm h}$ is the black hole horizon and $R$ is the radius of the entangling region. We provide analytic formulae for these quantities as functions of the boundary spacetime dimension $d$ including several orders higher than previously computed. We observe that the change in entanglement entropy has definite sign at each order and subregion complexity has a negative sign relative to entanglement entropy at each of those orders (except at first order or in three spacetime dimensions, where it vanishes identically). We combine pre-existing work on the complexity equals volume conjecture and the conjectured relationship between Fisher information and bulk entanglement to suggest a refinement of the so-called first law of entanglement thermodynamics by introducing a work term associated with complexity. This extends the previously proposed first law, which held to first order, to one which holds to second order. We note that the proposed relation does not hold to third order and speculate on the existence of additional information-theoretic quantities that may also play a role.
We generalize the coset procedure of homogeneous spacetimes in (pseudo-)Riemannian geometry to non-Lorentzian geometries. These are manifolds endowed with nowhere vanishing invertible vielbeins that transform under local non-Lorentzian tangent space transformations. In particular, we focus on nonrelativistic symmetry algebras that give rise to (torsional) Newton-Cartan geometries, for which we demonstrate how the Newton-Cartan metric complex is determined by degenerate co- and contravariant symmetric bilinear forms on the coset. In specific cases, we also show the connection of the resulting nonrelativistic coset spacetimes to pseudo-Riemannian cosets via Inonu-Wigner contraction of relativistic algebras as well as null reduction. Our construction is of use for example when considering limits of the AdS/CFT correspondence in which nonrelativistic spacetimes appear as gravitational backgrounds for nonrelativistic string or gravity theories.
We continue the study of the nonrelativistic short-distance completions of a naturally light Higgs, focusing on the interplay between the gauge symmetries and the polynomial shift symmetries. We investigate the naturalness of nonrelativistic scalar q uantum electrodynamics with a dynamical critical exponent $z=3$ by computing leading power law divergences to the scalar propagator in this theory. We find that power law divergences exhibit a more refined structure in theories that lack boost symmetries. Finally, in this toy model, we show that it is possible to preserve a fairly large hierarchy between the scalar mass and the high energy naturalness scale across 7 orders of magnitude, while accommodating a gauge coupling of order 0.1.
We study quantum corrections to projectable Horava gravity with $z = 2$ scaling in 2+1 dimensions. Using the background field method, we utilize a non-singular gauge to compute the anomalous dimension of the cosmological constant at one loop, in a normalization adapted to the spatial curvature term.
Nonrelativistic scalar field theories can exhibit a natural cascading hierarchy of scales, protected by a hierarchy of polynomial shift symmetries. Using a simple model, we argue that a high-energy cross-over to such nonrelativistic behavior naturall y leads to light scalars, and thus represents a useful ingredient for technically natural resolutions of scalar mass hierarchies, perhaps even the Higgs mass hierarchy puzzle.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا