ﻻ يوجد ملخص باللغة العربية
We develop a new heat kernel method that is suited for a systematic study of the renormalization group flow in Horava gravity (and in Lifshitz field theories in general). This method maintains covariance at all stages of the calculation, which is achieved by introducing a generalized Fourier transform covariant with respect to the nonrelativistic background spacetime. As a first test, we apply this method to compute the anisotropic Weyl anomaly for a (2+1)-dimensional scalar field theory around a z=2 Lifshitz point and corroborate the previously found result. We then proceed to general scalar operators and evaluate their one-loop effective action. The covariant heat kernel method that we develop also directly applies to operators with spin structures in arbitrary dimensions.
We consider Lifshitz-type scalar theories with explicit breaking of the Lorentz symmetry that, in addition, exhibit anisotropic scaling laws near the ultraviolet fixed point. Using the proper time regularization method on the spatial coordinates only
Non-Abelian gauge theories with composite fields are examined in the background field method. Generating functionals of Greens functions for a Yang--Mills theory with composite and background fields are introduced, including the generating functional
We show that a certain class of nonlocal scalar models, with a kinetic operator inspired by string field theory, is equivalent to a system which is local in the coordinates but nonlocal in an auxiliary evolution variable. This system admits both Lagr
A new systematic approach extending the notion of frames to the Palatini scalar-tensor theories of gravity in various dimensions n>2 is proposed. We impose frame transformation induced by the group action which includes almost-geodesic and conformal
We review in simple terms the covariant approaches to the canonical formulation of classical relativistic field theories (in particular gauge field theories) and we discuss the relationships between these approaches as well as the relation with the s