ترغب بنشر مسار تعليمي؟ اضغط هنا

175 - Keunwoo Choi , Yuxuan Wang 2021
We propose a multimodal singing language classification model that uses both audio content and textual metadata. LRID-Net, the proposed model, takes an audio signal and a language probability vector estimated from the metadata and outputs the probabi lities of the target languages. Optionally, LRID-Net is facilitated with modality dropouts to handle a missing modality. In the experiment, we trained several LRID-Nets with varying modality dropout configuration and tested them with various combinations of input modalities. The experiment results demonstrate that using multimodal input improves performance. The results also suggest that adopting modality dropout does not degrade the performance of the model when there are full modality inputs while enabling the model to handle missing modality cases to some extent.
Music classification is a task to classify a music piece into labels such as genres or composers. We propose large-scale MIDI based composer classification systems using GiantMIDI-Piano, a transcription-based dataset. We propose to use piano rolls, o nset rolls, and velocity rolls as input representations and use deep neural networks as classifiers. To our knowledge, we are the first to investigate the composer classification problem with up to 100 composers. By using convolutional recurrent neural networks as models, our MIDI based composer classification system achieves a 10-composer and a 100-composer classification accuracies of 0.648 and 0.385 (evaluated on 30-second clips) and 0.739 and 0.489 (evaluated on music pieces), respectively. Our MIDI based composer system outperforms several audio-based baseline classification systems, indicating the effectiveness of using compact MIDI representations for composer classification.
The purpose of speech dereverberation is to remove quality-degrading effects of a time-invariant impulse response filter from the signal. In this report, we describe an approach to speech dereverberation that involves joint estimation of the dry spee ch signal and of the room impulse response. We explore deep learning models that apply to each task separately, and how these can be combined in a joint model with shared parameters.
We introduce DrummerNet, a drum transcription system that is trained in an unsupervised manner. DrummerNet does not require any ground-truth transcription and, with the data-scalability of deep neural networks, learns from a large unlabeled dataset. In DrummerNet, the target drum signal is first passed to a (trainable) transcriber, then reconstructed in a (fixed) synthesizer according to the transcription estimate. By training the system to minimize the distance between the input and the output audio signals, the transcriber learns to transcribe without ground truth transcription. Our experiment shows that DrummerNet performs favorably compared to many other recent drum transcription systems, both supervised and unsupervised.
Since the vocal component plays a crucial role in popular music, singing voice detection has been an active research topic in music information retrieval. Although several proposed algorithms have shown high performances, we argue that there still is a room to improve to build a more robust singing voice detection system. In order to identify the area of improvement, we first perform an error analysis on three recent singing voice detection systems. Based on the analysis, we design novel methods to test the systems on multiple sets of internally curated and generated data to further examine the pitfalls, which are not clearly revealed with the current datasets. From the experiment results, we also propose several directions towards building a more robust singing voice detector.
The expressive nature of the voice provides a powerful medium for communicating sonic ideas, motivating recent research on methods for query by vocalisation. Meanwhile, deep learning methods have demonstrated state-of-the-art results for matching voc al imitations to imitated sounds, yet little is known about how well learned features represent the perceptual similarity between vocalisations and queried sounds. In this paper, we address this question using similarity ratings between vocal imitations and imitated drum sounds. We use a linear mixed effect regression model to show how features learned by convolutional auto-encoders (CAEs) perform as predictors for perceptual similarity between sounds. Our experiments show that CAEs outperform three baseline feature sets (spectrogram-based representations, MFCCs, and temporal features) at predicting the subjective similarity ratings. We also investigate how the size and shape of the encoded layer effects the predictive power of the learned features. The results show that preservation of temporal information is more important than spectral resolution for this application.
In the use of deep neural networks, it is crucial to provide appropriate input representations for the network to learn from. In this paper, we propose an approach to learn a representation that focus on rhythmic representation which is named as DLR (Deep Learning Rhythmic representation). The proposed approach aims to learn DLR from the raw audio signal and use it for other music informatics tasks. A 1-dimensional convolutional network is utilised in the learning of DLR. In the experiment, we present the results from the source task and the target task as well as visualisations of DLRs. The results reveals that DLR provides compact rhythmic information which can be used on multi-tagging task.
Following their success in Computer Vision and other areas, deep learning techniques have recently become widely adopted in Music Information Retrieval (MIR) research. However, the majority of works aim to adopt and assess methods that have been show n to be effective in other domains, while there is still a great need for more original research focusing on music primarily and utilising musical knowledge and insight. The goal of this paper is to boost the interest of beginners by providing a comprehensive tutorial and reducing the barriers to entry into deep learning for MIR. We lay out the basic principles and review prominent works in this hard to navigate the field. We then outline the network structures that have been successful in MIR problems and facilitate the selection of building blocks for the problems at hand. Finally, guidelines for new tasks and some advanced topics in deep learning are discussed to stimulate new research in this fascinating field.
Deep neural networks (DNN) have been successfully applied to music classification including music tagging. However, there are several open questions regarding the training, evaluation, and analysis of DNNs. In this article, we investigate specific as pects of neural networks, the effects of noisy labels, to deepen our understanding of their properties. We analyse and (re-)validate a large music tagging dataset to investigate the reliability of training and evaluation. Using a trained network, we compute label vector similarities which is compared to groundtruth similarity. The results highlight several important aspects of music tagging and neural networks. We show that networks can be effective despite relatively large error rates in groundtruth datasets, while conjecturing that label noise can be the cause of varying tag-wise performance differences. Lastly, the analysis of our trained network provides valuable insight into the relationships between music tags. These results highlight the benefit of using data-driven methods to address automatic music tagging.
We introduce a convolutional recurrent neural network (CRNN) for music tagging. CRNNs take advantage of convolutional neural networks (CNNs) for local feature extraction and recurrent neural networks for temporal summarisation of the extracted featur es. We compare CRNN with three CNN structures that have been used for music tagging while controlling the number of parameters with respect to their performance and training time per sample. Overall, we found that CRNNs show a strong performance with respect to the number of parameter and training time, indicating the effectiveness of its hybrid structure in music feature extraction and feature summarisation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا