ترغب بنشر مسار تعليمي؟ اضغط هنا

A Tutorial on Deep Learning for Music Information Retrieval

56   0   0.0 ( 0 )
 نشر من قبل Keunwoo Choi Mr
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Following their success in Computer Vision and other areas, deep learning techniques have recently become widely adopted in Music Information Retrieval (MIR) research. However, the majority of works aim to adopt and assess methods that have been shown to be effective in other domains, while there is still a great need for more original research focusing on music primarily and utilising musical knowledge and insight. The goal of this paper is to boost the interest of beginners by providing a comprehensive tutorial and reducing the barriers to entry into deep learning for MIR. We lay out the basic principles and review prominent works in this hard to navigate the field. We then outline the network structures that have been successful in MIR problems and facilitate the selection of building blocks for the problems at hand. Finally, guidelines for new tasks and some advanced topics in deep learning are discussed to stimulate new research in this fascinating field.



قيم البحث

اقرأ أيضاً

73 - Rong Gong , Xavier Serra 2017
Music Information Retrieval (MIR) technologies have been proven useful in assisting western classical singing training. Jingju (also known as Beijing or Peking opera) singing is different from western singing in terms of most of the perceptual dimens ions, and the trainees are taught by using mouth/heart method. In this paper, we first present the training method used in the professional jingju training classroom scenario and show the potential benefits of introducing the MIR technologies into the training process. The main part of this paper dedicates to identify the potential MIR technologies for jingju singing training. To this intent, we answer the question: how the jingju singing tutors and trainees value the importance of each jingju musical dimension-intonation, rhythm, loudness, tone quality and pronunciation? This is done by (i) classifying the classroom singing practices, tutors verbal feedbacks into these 5 dimensions, (ii) surveying the trainees. Then, with the help of the music signal analysis, a finer inspection on the classroom practice recording examples reveals the detailed elements in the training process. Finally, based on the above analysis, several potential MIR technologies are identified and would be useful for the jingju singing training.
116 - Rafael Valle 2018
This paper describes computational methods for the visual display and analysis of music information. We provide a concise description of software, music descriptors and data visualization techniques commonly used in music information retrieval. Final ly, we provide use cases where the described software, descriptors and visualizations are showcased.
Synthesize human motions from music, i.e., music to dance, is appealing and attracts lots of research interests in recent years. It is challenging due to not only the requirement of realistic and complex human motions for dance, but more importantly, the synthesized motions should be consistent with the style, rhythm and melody of the music. In this paper, we propose a novel autoregressive generative model, DanceNet, to take the style, rhythm and melody of music as the control signals to generate 3D dance motions with high realism and diversity. To boost the performance of our proposed model, we capture several synchronized music-dance pairs by professional dancers, and build a high-quality music-dance pair dataset. Experiments have demonstrated that the proposed method can achieve the state-of-the-art results.
Modern deep learning methods have equipped researchers and engineers with incredibly powerful tools to tackle problems that previously seemed impossible. However, since deep learning methods operate as black boxes, the uncertainty associated with the ir predictions is often challenging to quantify. Bayesian statistics offer a formalism to understand and quantify the uncertainty associated with deep neural networks predictions. This paper provides a tutorial for researchers and scientists who are using machine learning, especially deep learning, with an overview of the relevant literature and a complete toolset to design, implement, train, use and evaluate Bayesian neural networks.
315 - Jaehun Kim 2018
Inspired by the success of deploying deep learning in the fields of Computer Vision and Natural Language Processing, this learning paradigm has also found its way into the field of Music Information Retrieval. In order to benefit from deep learning i n an effective, but also efficient manner, deep transfer learning has become a common approach. In this approach, it is possible to reuse the output of a pre-trained neural network as the basis for a new learning task. The underlying hypothesis is that if the initial and new learning tasks show commonalities and are applied to the same type of input data (e.g. music audio), the generated deep representation of the data is also informative for the new task. Since, however, most of the networks used to generate deep representations are trained using a single initial learning source, their representation is unlikely to be informative for all possible future tasks. In this paper, we present the results of our investigation of what are the most important factors to generate deep representations for the data and learning tasks in the music domain. We conducted this investigation via an extensive empirical study that involves multiple learning sources, as well as multiple deep learning architectures with varying levels of information sharing between sources, in order to learn music representations. We then validate these representations considering multiple target datasets for evaluation. The results of our experiments yield several insights on how to approach the design of methods for learning widely deployable deep data representations in the music domain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا