ترغب بنشر مسار تعليمي؟ اضغط هنا

To date the most precise estimations of the critical exponent for the Anderson transition have been made using the transfer matrix method. This method involves the simulation of extremely long quasi one-dimensional systems. The method is inherently s erial and is not well suited to modern massively parallel supercomputers. The obvious alternative is to simulate a large ensemble of hypercubic systems and average. While this permits taking full advantage of both OpenMP and MPI on massively parallel supercomputers, a straight forward implementation results in data that does not scale. We show that this problem can be avoided by generating random sets of orthogonal starting vectors with an appropriate stationary probability distribution. We have applied this method to the Anderson transition in the three-dimensional orthogonal universality class and been able to increase the largest $Ltimes L$ cross section simulated from $L=24$ (New J. Physics, 16, 015012 (2014)) to $L=64$ here. This permits an estimation of the critical exponent with improved precision and without the necessity of introducing an irrelevant scaling variable. In addition, this approach is better suited to simulations with correlated random potentials such as is needed in quantum Hall or cold atom systems.
We describe a Borel-Pade re-summation of the $beta$-function in the three Wigner-Dyson symmetry classes. Using this approximate $beta$-function we discuss the dimensional dependence of the critical exponent and compare with numerical estimates. We al so estimate the lower critical dimension of the symplectic symmetry class.
In the supplemental materials we justify our choice of the number of Chebychev moments used within the kernel polynomial method, show some preliminary results for the large coupling behavior, discuss possible correlation effects in the local density of states, estimate the spin relaxation length and introduce the goodness of fit probability that is used to assess the quality of the fits.
We study effects of classical magnetic impurities on the Anderson metal-insulator transition numerically. We find that a small concentration of Heisenberg impurities enhances the critical disorder amplitude $W_{rm c}$ with increasing exchange couplin g strength $J$. The resulting scaling with $J$ is analyzed which supports an anomalous scaling prediction by Wegner due to the combined breaking of time-reversal and spin-rotational symmetry. Moreover, we find that the presence of magnetic impurities lowers the critical correlation length exponent $ u$ and enhances the multifractality parameter $alpha_0$. The new value of $ u$ improves the agreement with the value measured in experiments on the metal-insulator transition (MIT) in doped semiconductors like phosphor-doped silicon, where a finite density of magnetic moments is known to exist in the vicinity of the MIT. The results are obtained by a finite-size scaling analysis of the geometric mean of the local density of states which is calculated by means of the kernel polynomial method. We establish this combination of numerical techniques as a method to obtain critical properties of disordered systems quantitatively.
We report improved numerical estimates of the critical exponent of the Anderson transition in Andersons model of localization in $d=4$ and $d=5$ dimensions. We also report a new Borel-Pade analysis of existing $epsilon$ expansion results that incorpo rates the asymptotic behaviour for $dto infty$ and gives better agreement with available numerical results.
We report a simulation of the metal-insulator transition in a model of a doped semiconductor that treats disorder and interactions on an equal footing. The model is analyzed using density functional theory. From a multi-fractal analysis of the Kohn-S ham eigenfunctions, we find $ u approx 1.3$ for the critical exponent of the correlation length. This differs from that of Andersons model of localization and suggests that the Coulomb interaction changes the universality class of the transition.
We report a careful finite size scaling study of the metal insulator transition in Andersons model of localisation. We focus on the estimation of the critical exponent $ u$ that describes the divergence of the localisation length. We verify the unive rsality of this critical exponent for three different distributions of the random potential: box, normal and Cauchy. Our results for the critical exponent are consistent with the measured values obtained in experiments on the dynamical localisation transition in the quantum kicked rotor realised in a cold atomic gas.
We report a numerical analysis of Anderson localization in a model of a doped semiconductor. The model incorporates the disorder arising from the random spatial distribution of the donor impurities and takes account of the electron-electron interacti ons between the carriers using density functional theory in the local density approximation. Preliminary results suggest that the model exhibits a metal-insulator transition.
107 - Keith Slevin , Tomi Ohtsuki 2012
In Ref.1 (Physical Review B 80, 041304(R) (2009)), we reported an estimate of the critical exponent for the divergence of the localization length at the quantum Hall transition that is significantly larger than those reported in the previous publishe d work of other authors. In this paper, we update our finite size scaling analysis of the Chalker-Coddington model and suggest the origin of the previous underestimate by other authors. We also compare our results with the predictions of Lutken and Ross (Physics Letters B 653, 363 (2007)).
We describe a new multifractal finite size scaling (MFSS) procedure and its application to the Anderson localization-delocalization transition. MFSS permits the simultaneous estimation of the critical parameters and the multifractal exponents. Simula tions of system sizes up to L^3=120^3 and involving nearly 10^6 independent wavefunctions have yielded unprecedented precision for the critical disorder W_c=16.530 (16.524,16.536) and the critical exponent nu=1.590 (1.579,1.602). We find that the multifractal exponents Delta_q exhibit a previously predicted symmetry relation and we confirm the non-parabolic nature of their spectrum. We explain in detail the MFSS procedure first introduced in our Letter [Phys. Rev. Lett. 105, 046403 (2010)] and, in addition, we show how to take account of correlations in the simulation data. The MFSS procedure is applicable to any continuous phase transition exhibiting multifractal fluctuations in the vicinity of the critical point.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا