ترغب بنشر مسار تعليمي؟ اضغط هنا

Multifractal finite-size-scaling and universality at the Anderson transition

473   0   0.0 ( 0 )
 نشر من قبل Alberto Rodriguez
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a new multifractal finite size scaling (MFSS) procedure and its application to the Anderson localization-delocalization transition. MFSS permits the simultaneous estimation of the critical parameters and the multifractal exponents. Simulations of system sizes up to L^3=120^3 and involving nearly 10^6 independent wavefunctions have yielded unprecedented precision for the critical disorder W_c=16.530 (16.524,16.536) and the critical exponent nu=1.590 (1.579,1.602). We find that the multifractal exponents Delta_q exhibit a previously predicted symmetry relation and we confirm the non-parabolic nature of their spectrum. We explain in detail the MFSS procedure first introduced in our Letter [Phys. Rev. Lett. 105, 046403 (2010)] and, in addition, we show how to take account of correlations in the simulation data. The MFSS procedure is applicable to any continuous phase transition exhibiting multifractal fluctuations in the vicinity of the critical point.



قيم البحث

اقرأ أيضاً

We use multifractal finite-size scaling to perform a high-precision numerical study of the critical properties of the Anderson localization-delocalization transition in the unitary symmetry class, considering the Anderson model including a random mag netic flux. We demonstrate the scale invariance of the distribution of wavefunction intensities at the critical point and study its behavior across the transition. Our analysis, involving more than $4times10^6$ independently generated wavefunctions of system sizes up to $L^3=150^3$, yields accurate estimates for the critical exponent of the localization length, $ u=1.446 (1.440,1.452)$, the critical value of the disorder strength and the multifractal exponents.
We propose a generalization of multifractal analysis that is applicable to the critical regime of the Anderson localization-delocalization transition. The approach reveals that the behavior of the probability distribution of wavefunction amplitudes i s sufficient to characterize the transition. In combination with finite-size scaling, this formalism permits the critical parameters to be estimated without the need for conductance or other transport measurements. Applying this method to high-precision data for wavefunction statistics obtained by exact diagonalization of the three-dimensional Anderson model, we estimate the critical exponent $ u=1.58pm 0.03$.
This chapter describes the progress made during the past three decades in the finite size scaling analysis of the critical phenomena of the Anderson transition. The scaling theory of localisation and the Anderson model of localisation are briefly ske tched. The finite size scaling method is described. Recent results for the critical exponents of the different symmetry classes are summarised. The importance of corrections to scaling are emphasised. A comparison with experiment is made, and a direction for future work is suggested.
The probability density function (PDF) for critical wavefunction amplitudes is studied in the three-dimensional Anderson model. We present a formal expression between the PDF and the multifractal spectrum f(alpha) in which the role of finite-size cor rections is properly analyzed. We show the non-gaussian nature and the existence of a symmetry relation in the PDF. From the PDF, we extract information about f(alpha) at criticality such as the presence of negative fractal dimensions and we comment on the possible existence of termination points. A PDF-based multifractal analysis is hence shown to be a valid alternative to the standard approach based on the scaling of general inverse participation ratios.
We study various box-size scaling techniques to obtain the multifractal properties, in terms of the singularity spectrum f(alpha), of the critical eigenstates at the metal-insulator transition within the 3-D Anderson model of localisation. The typica l and ensemble averaged scaling laws of the generalised inverse participation ratios are considered. In pursuit of a numerical optimisation of the box-scaling technique we discuss different box-partitioning schemes including cubic and non-cubic boxes, use of periodic boundary conditions to enlarge the system and single and multiple origins for the partitioning grid are also implemented. We show that the numerically most reliable method is to divide a system of linear size L equally into cubic boxes of size l for which L/l is an integer. This method is the least numerically expensive while having a good reliability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا