ترغب بنشر مسار تعليمي؟ اضغط هنا

AI systems have seen significant adoption in various domains. At the same time, further adoption in some domains is hindered by inability to fully trust an AI system that it will not harm a human. Besides the concerns for fairness, privacy, transpare ncy, and explainability are key to developing trusts in AI systems. As stated in describing trustworthy AI Trust comes through understanding. How AI-led decisions are made and what determining factors were included are crucial to understand. The subarea of explaining AI systems has come to be known as XAI. Multiple aspects of an AI system can be explained; these include biases that the data might have, lack of data points in a particular region of the example space, fairness of gathering the data, feature importances, etc. However, besides these, it is critical to have human-centered explanations that are directly related to decision-making similar to how a domain expert makes decisions based on domain knowledge, that also include well-established, peer-validated explicit guidelines. To understand and validate an AI systems outcomes (such as classification, recommendations, predictions), that lead to developing trust in the AI system, it is necessary to involve explicit domain knowledge that humans understand and use.
Contextual Bandits find important use cases in various real-life scenarios such as online advertising, recommendation systems, healthcare, etc. However, most of the algorithms use flat feature vectors to represent context whereas, in the real world, there is a varying number of objects and relations among them to model in the context. For example, in a music recommendation system, the user context contains what music they listen to, which artists create this music, the artist albums, etc. Adding richer relational context representations also introduces a much larger context space making exploration-exploitation harder. To improve the efficiency of exploration-exploitation knowledge about the context can be infused to guide the exploration-exploitation strategy. Relational context representations allow a natural way for humans to specify knowledge owing to their descriptive nature. We propose an adaptation of Knowledge Infused Policy Gradients to the Contextual Bandit setting and a novel Knowledge Infused Policy Gradients Upper Confidence Bound algorithm and perform an experimental analysis of a simulated music recommendation dataset and various real-life datasets where expert knowledge can drastically reduce the total regret and where it cannot.
During the ongoing COVID-19 crisis, subreddits on Reddit, such as r/Coronavirus saw a rapid growth in users requests for help (support seekers - SSs) including individuals with varying professions and experiences with diverse perspectives on care (su pport providers - SPs). Currently, knowledgeable human moderators match an SS with a user with relevant experience, i.e, an SP on these subreddits. This unscalable process defers timely care. We present a medical knowledge-infused approach to efficient matching of SS and SPs validated by experts for the users affected by anxiety and depression, in the context of with COVID-19. After matching, each SP to an SS labeled as either supportive, informative, or similar (sharing experiences) using the principles of natural language inference. Evaluation by 21 domain experts indicates the efficacy of incorporated knowledge and shows the efficacy the matching system.
COVID-19 has impacted nations differently based on their policy implementations. The effective policy requires taking into account public information and adaptability to new knowledge. Epidemiological models built to understand COVID-19 seldom provid e the policymaker with the capability for adaptive pandemic control (APC). Among the core challenges to be overcome include (a) inability to handle a high degree of non-homogeneity in different contributing features across the pandemic timeline, (b) lack of an approach that enables adaptive incorporation of public health expert knowledge, and (c) transparent models that enable understanding of the decision-making process in suggesting policy. In this work, we take the early steps to address these challenges using Knowledge Infused Policy Gradient (KIPG) methods. Prior work on knowledge infusion does not handle soft and hard imposition of varying forms of knowledge in disease information and guidelines to necessarily comply with. Furthermore, the models do not attend to non-homogeneity in feature counts, manifesting as partial observability in informing the policy. Additionally, interpretable structures are extracted post-learning instead of learning an interpretable model required for APC. To this end, we introduce a mathematical framework for KIPG methods that can (a) induce relevant feature counts over multi-relational features of the world, (b) handle latent non-homogeneous counts as hidden variables that are linear combinations of kernelized aggregates over the features, and (b) infuse knowledge as functional constraints in a principled manner. The study establishes a theory for imposing hard and soft constraints and simulates it through experiments. In comparison with knowledge-intensive baselines, we show quick sample efficient adaptation to new knowledge and interpretability in the learned policy, especially in a pandemic context.
With strong marketing advocacy of the benefits of cannabis use for improved mental health, cannabis legalization is a priority among legislators. However, preliminary scientific research does not conclusively associate cannabis with improved mental h ealth. In this study, we explore the relationship between depression and consumption of cannabis in a targeted social media corpus involving personal use of cannabis with the intent to derive its potential mental health benefit. We use tweets that contain an association among three categories annotated by domain experts - Reason, Effect, and Addiction. The state-of-the-art Natural Langauge Processing techniques fall short in extracting these relationships between cannabis phrases and the depression indicators. We seek to address the limitation by using domain knowledge; specifically, the Drug Abuse Ontology for addiction augmented with Diagnostic and Statistical Manual of Mental Disorders lexicons for mental health. Because of the lack of annotations due to the limited availability of the domain experts time, we use supervised contrastive learning in conjunction with GPT-3 trained on a vast corpus to achieve improved performance even with limited supervision. Experimental results show that our method can significantly extract cannabis-depression relationships better than the state-of-the-art relation extractor. High-quality annotations can be provided using a nearest neighbor approach using the learned representations that can be used by the scientific community to understand the association between cannabis and depression better.
The pervasiveness of Internet-of-Things in our daily life has led to a recent surge in fog computing, encompassing a collaboration of cloud computing and edge intelligence. To that effect, deep learning has been a major driving force towards enabling such intelligent systems. However, growing model sizes in deep learning pose a significant challenge towards deployment in resource-constrained edge devices. Moreover, in a distributed intelligence environment, efficient workload distribution is necessary between edge and cloud systems. To address these challenges, we propose a conditionally deep hybrid neural network for enabling AI-based fog computing. The proposed network can be deployed in a distributed manner, consisting of quantized layers and early exits at the edge and full-precision layers on the cloud. During inference, if an early exit has high confidence in the classification results, it would allow samples to exit at the edge, and the deeper layers on the cloud are activated conditionally, which can lead to improved energy efficiency and inference latency. We perform an extensive design space exploration with the goal of minimizing energy consumption at the edge while achieving state-of-the-art classification accuracies on image classification tasks. We show that with binarized layers at the edge, the proposed conditional hybrid network can process 65% of inferences at the edge, leading to 5.5x computational energy reduction with minimal accuracy degradation on CIFAR-10 dataset. For the more complex dataset CIFAR-100, we observe that the proposed network with 4-bit quantization at the edge achieves 52% early classification at the edge with 4.8x energy reduction. The analysis gives us insights on designing efficient hybrid networks which achieve significantly higher energy efficiency than full-precision networks for edge-cloud based distributed intelligence systems.
We compute the next-to-leading order (NLO) impact factor for inclusive photon $+$dijet production in electron-nucleus (e+A) deeply inelastic scattering (DIS) at small $x$. An important ingredient in our computation is the simple structure of ``shock wave fermion and gluon propagators. This allows one to employ standard momentum space Feynman diagram techniques for higher order computations in the Regge limit of fixed $Q^2gg Lambda_{rm QCD}^2$ and $xrightarrow 0$. Our computations in the Color Glass Condensate (CGC) effective field theory include the resummation of all-twist power corrections $Q_s^2/Q^2$, where $Q_s$ is the saturation scale in the nucleus. We discuss the structure of ultraviolet, collinear and soft divergences in the CGC, and extract the leading logs in $x$; the structure of the corresponding rapidity divergences gives a nontrivial first principles derivation of the JIMWLK renormalization group evolution equation for multiparton lightlike Wilson line correlators. Explicit expressions are given for the $x$-independent $O(alpha_s)$ contributions that constitute the NLO impact factor. These results, combined with extant results on NLO JIMWLK evolution, provide the ingredients to compute the inclusive photon $+$ dijet cross-section at small $x$ to $O(alpha_s^3 ln(x))$. First results for the NLO impact factor in inclusive dijet production are recovered in the soft photon limit. A byproduct of our computation is the LO photon+ 3 jet (quark-antiquark-gluon) cross-section.
We highlight the principal results of a computation in the Color Glass Condensate effective field theory (CGC EFT) of the next-to-leading order (NLO) impact factor for inclusive photon+dijet production at Bjorken $x_{rm Bj} ll 1$ in deeply inelastic electron-nucleus (e+A DIS) collisions. When combined with extant results for next-to-leading log $x_{rm Bj}$ JIMWLK renormalization group (RG) evolution of gauge invariant two-point (dipole) and four-point (quadrupole) correlators of light-like Wilson lines, the inclusive photon+dijet e+A DIS cross-section can be determined to $sim 10$% accuracy. Our computation simultaneously provides the ingredients to compute fully inclusive DIS, inclusive photon, inclusive dijet and inclusive photon+jet channels to the same accuracy. This makes feasible quantitative extraction of many-body correlators of saturated gluons and precise determination of the saturation scale $Q_{S,A}(x_{rm Bj})$ at a future Electron-Ion Collider. An interesting feature of our NLO result is the structure of the violation of the soft gluon theorem in the Regge limit. Another is the appearance in gluon emission of time-like non-global logs which also satisfy JIMWLK RG evolution.
There is widespread interest in emerging technologies, especially resistive crossbars for accelerating Deep Neural Networks (DNNs). Resistive crossbars offer a highly-parallel and efficient matrix-vector-multiplication (MVM) operation. MVM being the most dominant operation in DNNs makes crossbars ideally suited. However, various sources of device and circuit non-idealities lead to errors in the MVM output, thereby reducing DNN accuracy. Towards that end, we propose crossbar re-mapping strategies to mitigate line-resistance induced accuracy degradation in DNNs, without having to re-train the learned weights, unlike most prior works. Line-resistances degrade the voltage levels along the crossbar columns, thereby inducing more errors at the columns away from the drivers. We rank the DNN weights and kernels based on a sensitivity analysis, and re-arrange the columns such that the most sensitive kernels are mapped closer to the drivers, thereby minimizing the impact of errors on the overall accuracy. We propose two algorithms $-$ static remapping strategy (SRS) and dynamic remapping strategy (DRS), to optimize the crossbar re-arrangement of a pre-trained DNN. We demonstrate the benefits of our approach on a standard VGG16 network trained using CIFAR10 dataset. Our results show that SRS and DRS limit the accuracy degradation to 2.9% and 2.1%, respectively, compared to a 5.6% drop from an as it is mapping of weights and kernels to crossbars. We believe this work brings an additional aspect for optimization, which can be used in tandem with existing mitigation techniques, such as in-situ compensation, technology aware training and re-training approaches, to enhance system performance.
Adversarial examples are perturbed inputs that are designed (from a deep learning networks (DLN) parameter gradients) to mislead the DLN during test time. Intuitively, constraining the dimensionality of inputs or parameters of a network reduces the s pace in which adversarial examples exist. Guided by this intuition, we demonstrate that discretization greatly improves the robustness of DLNs against adversarial attacks. Specifically, discretizing the input space (or allowed pixel levels from 256 values or 8-bit to 4 values or 2-bit) extensively improves the adversarial robustness of DLNs for a substantial range of perturbations for minimal loss in test accuracy. Furthermore, we find that Binary Neural Networks (BNNs) and related variants are intrinsically more robust than their full precision counterparts in adversarial scenarios. Combining input discretization with BNNs furthers the robustness even waiving the need for adversarial training for certain magnitude of perturbation values. We evaluate the effect of discretization on MNIST, CIFAR10, CIFAR100 and Imagenet datasets. Across all datasets, we observe maximal adversarial resistance with 2-bit input discretization that incurs an adversarial accuracy loss of just ~1-2% as compared to clean test accuracy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا