ترغب بنشر مسار تعليمي؟ اضغط هنا

Is depression related to cannabis?: A knowledge-infused model for Entity and Relation Extraction with Limited Supervision

120   0   0.0 ( 0 )
 نشر من قبل Kaushik Roy
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With strong marketing advocacy of the benefits of cannabis use for improved mental health, cannabis legalization is a priority among legislators. However, preliminary scientific research does not conclusively associate cannabis with improved mental health. In this study, we explore the relationship between depression and consumption of cannabis in a targeted social media corpus involving personal use of cannabis with the intent to derive its potential mental health benefit. We use tweets that contain an association among three categories annotated by domain experts - Reason, Effect, and Addiction. The state-of-the-art Natural Langauge Processing techniques fall short in extracting these relationships between cannabis phrases and the depression indicators. We seek to address the limitation by using domain knowledge; specifically, the Drug Abuse Ontology for addiction augmented with Diagnostic and Statistical Manual of Mental Disorders lexicons for mental health. Because of the lack of annotations due to the limited availability of the domain experts time, we use supervised contrastive learning in conjunction with GPT-3 trained on a vast corpus to achieve improved performance even with limited supervision. Experimental results show that our method can significantly extract cannabis-depression relationships better than the state-of-the-art relation extractor. High-quality annotations can be provided using a nearest neighbor approach using the learned representations that can be used by the scientific community to understand the association between cannabis and depression better.

قيم البحث

اقرأ أيضاً

Extracting relational triples from texts is a fundamental task in knowledge graph construction. The popular way of existing methods is to jointly extract entities and relations using a single model, which often suffers from the overlapping triple pro blem. That is, there are multiple relational triples that share the same entities within one sentence. In this work, we propose an effective cascade dual-decoder approach to extract overlapping relational triples, which includes a text-specific relation decoder and a relation-corresponded entity decoder. Our approach is straightforward: the text-specific relation decoder detects relations from a sentence according to its text semantics and treats them as extra features to guide the entity extraction; for each extracted relation, which is with trainable embedding, the relation-corresponded entity decoder detects the corresponding head and tail entities using a span-based tagging scheme. In this way, the overlapping triple problem is tackled naturally. Experiments on two public datasets demonstrate that our proposed approach outperforms state-of-the-art methods and achieves better F1 scores under the strict evaluation metric. Our implementation is available at https://github.com/prastunlp/DualDec.
Few-shot relation extraction (FSRE) is of great importance in long-tail distribution problem, especially in special domain with low-resource data. Most existing FSRE algorithms fail to accurately classify the relations merely based on the information of the sentences together with the recognized entity pairs, due to limited samples and lack of knowledge. To address this problem, in this paper, we proposed a novel entity CONCEPT-enhanced FEw-shot Relation Extraction scheme (ConceptFERE), which introduces the inherent concepts of entities to provide clues for relation prediction and boost the relations classification performance. Firstly, a concept-sentence attention module is developed to select the most appropriate concept from multiple concepts of each entity by calculating the semantic similarity between sentences and concepts. Secondly, a self-attention based fusion module is presented to bridge the gap of concept embedding and sentence embedding from different semantic spaces. Extensive experiments on the FSRE benchmark dataset FewRel have demonstrated the effectiveness and the superiority of the proposed ConceptFERE scheme as compared to the state-of-the-art baselines. Code is available at https://github.com/LittleGuoKe/ConceptFERE.
109 - Zexuan Zhong , Danqi Chen 2020
End-to-end relation extraction aims to identify named entities and extract relations between them. Most recent work models these two subtasks jointly, either by casting them in one structured prediction framework, or performing multi-task learning th rough shared representations. In this work, we present a simple pipelined approach for entity and relation extraction, and establish the new state-of-the-art on standard benchmarks (ACE04, ACE05 and SciERC), obtaining a 1.7%-2.8% absolute improvement in relation F1 over previous joint models with the same pre-trained encoders. Our approach essentially builds on two independent encoders and merely uses the entity model to construct the input for the relation model. Through a series of careful examinations, we validate the importance of learning distinct contextual representations for entities and relations, fusing entity information early in the relation model, and incorporating global context. Finally, we also present an efficient approximation to our approach which requires only one pass of both entity and relation encoders at inference time, achieving an 8-16$times$ speedup with a slight reduction in accuracy.
Recently, prompt-tuning has achieved promising results for certain few-shot classification tasks. The core idea of prompt-tuning is to insert text pieces (i.e., templates) into the input and transform a classification task into a masked language mode ling problem. However, for relation extraction, determining an appropriate prompt template requires domain expertise, and it is cumbersome and time-consuming to obtain a suitable label word. Furthermore, there exist abundant semantic knowledge among the entities and relations that cannot be ignored. To this end, we focus on incorporating knowledge into prompt-tuning for relation extraction and propose a knowledge-aware prompt-tuning approach with synergistic optimization (KnowPrompt). Specifically, we inject entity and relation knowledge into prompt construction with learnable virtual template words as well as answer words and synergistically optimize their representation with knowledge constraints. Extensive experimental results on five datasets with standard and low-resource settings demonstrate the effectiveness of our approach.
In joint entity and relation extraction, existing work either sequentially encode task-specific features, leading to an imbalance in inter-task feature interaction where features extracted later have no direct contact with those that come first. Or t hey encode entity features and relation features in a parallel manner, meaning that feature representation learning for each task is largely independent of each other except for input sharing. We propose a partition filter network to model two-way interaction between tasks properly, where feature encoding is decomposed into two steps: partition and filter. In our encoder, we leverage two gates: entity and relation gate, to segment neurons into two task partitions and one shared partition. The shared partition represents inter-task information valuable to both tasks and is evenly shared across two tasks to ensure proper two-way interaction. The task partitions represent intra-task information and are formed through concerted efforts of both gates, making sure that encoding of task-specific features is dependent upon each other. Experiment results on six public datasets show that our model performs significantly better than previous approaches. In addition, contrary to what previous work has claimed, our auxiliary experiments suggest that relation prediction is contributory to named entity prediction in a non-negligible way. The source code can be found at https://github.com/Coopercoppers/PFN.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا