ترغب بنشر مسار تعليمي؟ اضغط هنا

A fundamental challenge for sequential recommenders is to capture the sequential patterns of users toward modeling how users transit among items. In many practical scenarios, however, there are a great number of cold-start users with only minimal log ged interactions. As a result, existing sequential recommendation models will lose their predictive power due to the difficulties in learning sequential patterns over users with only limited interactions. In this work, we aim to improve sequential recommendation for cold-start users with a novel framework named MetaTL, which learns to model the transition patterns of users through meta-learning. Specifically, the proposed MetaTL: (i) formulates sequential recommendation for cold-start users as a few-shot learning problem; (ii) extracts the dynamic transition patterns among users with a translation-based architecture; and (iii) adopts meta transitional learning to enable fast learning for cold-start users with only limited interactions, leading to accurate inference of sequential interactions.
Graphs are widely used to model the relational structure of data, and the research of graph machine learning (ML) has a wide spectrum of applications ranging from drug design in molecular graphs to friendship recommendation in social networks. Prevai ling approaches for graph ML typically require abundant labeled instances in achieving satisfactory results, which is commonly infeasible in real-world scenarios since labeled data for newly emerged concepts (e.g., new categorizations of nodes) on graphs is limited. Though meta-learning has been applied to different few-shot graph learning problems, most existing efforts predominately assume that all the data from those seen classes is gold-labeled, while those methods may lose their efficacy when the seen data is weakly-labeled with severe label noise. As such, we aim to investigate a novel problem of weakly-supervised graph meta-learning for improving the model robustness in terms of knowledge transfer. To achieve this goal, we propose a new graph meta-learning framework -- Graph Hallucination Networks (Meta-GHN) in this paper. Based on a new robustness-enhanced episodic training, Meta-GHN is meta-learned to hallucinate clean node representations from weakly-labeled data and extracts highly transferable meta-knowledge, which enables the model to quickly adapt to unseen tasks with few labeled instances. Extensive experiments demonstrate the superiority of Meta-GHN over existing graph meta-learning studies on the task of weakly-supervised few-shot node classification.
Graph Neural Networks have recently become a prevailing paradigm for various high-impact graph learning tasks. Existing efforts can be mainly categorized as spectral-based and spatial-based methods. The major challenge for the former is to find an ap propriate graph filter to distill discriminative information from input signals for learning. Recently, attempts such as Graph Convolutional Network (GCN) leverage Chebyshev polynomial truncation to seek an approximation of graph filters and bridge these two families of methods. It has been shown in recent studies that GCN and its variants are essentially employing fixed low-pass filters to perform information denoising. Thus their learning capability is rather limited and may over-smooth node representations at deeper layers. To tackle these problems, we develop a novel graph neural network framework AdaGNN with a well-designed adaptive frequency response filter. At its core, AdaGNN leverages a simple but elegant trainable filter that spans across multiple layers to capture the varying importance of different frequency components for node representation learning. The inherent differences among different feature channels are also well captured by the filter. As such, it empowers AdaGNN with stronger expressiveness and naturally alleviates the over-smoothing problem. We empirically validate the effectiveness of the proposed framework on various benchmark datasets. Theoretical analysis is also provided to show the superiority of the proposed AdaGNN. The implementation of AdaGNN is available at url{https://github.com/yushundong/AdaGNN}.
Network anomaly detection aims to find network elements (e.g., nodes, edges, subgraphs) with significantly different behaviors from the vast majority. It has a profound impact in a variety of applications ranging from finance, healthcare to social ne twork analysis. Due to the unbearable labeling cost, existing methods are predominately developed in an unsupervised manner. Nonetheless, the anomalies they identify may turn out to be data noises or uninteresting data instances due to the lack of prior knowledge on the anomalies of interest. Hence, it is critical to investigate and develop few-shot learning for network anomaly detection. In real-world scenarios, few labeled anomalies are also easy to be accessed on similar networks from the same domain as of the target network, while most of the existing works omit to leverage them and merely focus on a single network. Taking advantage of this potential, in this work, we tackle the problem of few-shot network anomaly detection by (1) proposing a new family of graph neural networks -- Graph Deviation Networks (GDN) that can leverage a small number of labeled anomalies for enforcing statistically significant deviations between abnormal and normal nodes on a network; and (2) equipping the proposed GDN with a new cross-network meta-learning algorithm to realize few-shot network anomaly detection by transferring meta-knowledge from multiple auxiliary networks. Extensive evaluations demonstrate the efficacy of the proposed approach on few-shot or even one-shot network anomaly detection.
Text classification is a critical research topic with broad applications in natural language processing. Recently, graph neural networks (GNNs) have received increasing attention in the research community and demonstrated their promising results on t his canonical task. Despite the success, their performance could be largely jeopardized in practice since they are: (1) unable to capture high-order interaction between words; (2) inefficient to handle large datasets and new documents. To address those issues, in this paper, we propose a principled model -- hypergraph attention networks (HyperGAT), which can obtain more expressive power with less computational consumption for text representation learning. Extensive experiments on various benchmark datasets demonstrate the efficacy of the proposed approach on the text classification task.
Attributed networks nowadays are ubiquitous in a myriad of high-impact applications, such as social network analysis, financial fraud detection, and drug discovery. As a central analytical task on attributed networks, node classification has received much attention in the research community. In real-world attributed networks, a large portion of node classes only contain limited labeled instances, rendering a long-tail node class distribution. Existing node classification algorithms are unequipped to handle the textit{few-shot} node classes. As a remedy, few-shot learning has attracted a surge of attention in the research community. Yet, few-shot node classification remains a challenging problem as we need to address the following questions: (i) How to extract meta-knowledge from an attributed network for few-shot node classification? (ii) How to identify the informativeness of each labeled instance for building a robust and effective model? To answer these questions, in this paper, we propose a graph meta-learning framework -- Graph Prototypical Networks (GPN). By constructing a pool of semi-supervised node classification tasks to mimic the real test environment, GPN is able to perform textit{meta-learning} on an attributed network and derive a highly generalizable model for handling the target classification task. Extensive experiments demonstrate the superior capability of GPN in few-shot node classification.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا