ترغب بنشر مسار تعليمي؟ اضغط هنا

Still today, the nucleosynthesis origin of Xe-H in presolar nanodiamonds is far from understood. Historically, possible explanations were proposed by a secondary neutron-burst process occurring in the He- or C/O-shells of a type-II supernova (SN-II), which are, however, not fully convincing in terms of modern nucleosynthesis conditions. Therefore, we have investigated Xe isotopic abundance features that may be diagnostic for differe
The astrophysical site of the r-process is still uncertain, and a full exploration of the systematics of this process in terms of its dependence on nuclear properties from stability to the neutron drip-line within realistic stellar environments has s till to be undertaken. Sufficiently high neutron to seed ratios can only be obtained either in very neutron-rich low-entropy environments or moderately neutron-rich high-entropy environments, related to neutron star mergers (or jets of neutron star matter) and the high-entropy wind of core-collapse supernova explosions. As chemical evolution models seem to disfavor neutron star mergers, we focus here on high-entropy environments characterized by entropy $S$, electron abundance $Y_e$ and expansion velocity $V_{exp}$. We investigate the termination point of charged-particle reactions, and we define a maximum entropy $S_{final}$ for a given $V_{exp}$ and $Y_e$, beyond which the seed production of heavy elements fails due to the very small matter density. We then investigate whether an r-process subsequent to the charged-particle freeze-out can in principle be understood on the basis of the classical approach, which assumes a chemical equilibrium between neutron captures and photodisintegrations, possibly followed by a $beta$-flow equilibrium. In particular, we illustrate how long such a chemical equilibrium approximation holds, how the freeze-out from such conditions affects the abundance pattern, and which role the late capture of neutrons originating from $beta$-delayed neutron emission can play.
We have performed large-scale nucleosynthesis calculations within the high-entropy-wind (HEW) scenario of type II supernovae. The primary aim was to constrain the conditions for the production of the classical p-only isotopes of the light trans-Fe el ements. We find, however, that for electron fractions in the range 0.458 $le$ Y$_e$ $le$ 0.478, sizeable abundances of p-, s- and r-process nuclei between $^{64}$Zn and $^{98}$Ru are coproduced in the HEW at low entropies (S $le$ 100) by a primary charged-particle process after an $alpha$-rich freezeout. With the above Y$_e$ -- S correlation, most of the predicted isotopic abundance ratios within a given element (e.g. $^{64}$Zn(p)/$^{70}$Zn(r) or $^{92}$Mo(p)/$^{94}$Mo(p)), as well as of neighboring elements (e.g. $^{70}$Ge(s+p)/$^{74}$Se(p) or $^{74}$Se(p)/$^{78}$Kr(p)) agree with the observed Solar-System ratios. Taking the Mo isotopic chain as a particularly challenging example, we show that our HEW model can account for the production of all 7 stable isotopes, from p-only $^{92}$Mo, via s-only $^{96}$Mo up to r-only $^{100}$Mo. Furthermore, our model is able to reproduce the isotopic composition of Mo in presolar SiC X-grains.}
While the high-entropy wind (HEW) of Type II supernovae remains one of the more promising sites for the rapid neutron-capture (r-) process, hydrodynamic simulations have yet to reproduce the astrophysical conditions under which the latter occurs. We have performed large-scale network calculations within an extended parameter range of the HEW, seeking to identify or to constrain the necessary conditions for a full reproduction of all r-process residuals N_{r,odot}=N_{odot}-N_{s,odot} by comparing the results with recent astronomical observations. A superposition of weighted entropy trajectories results in an excellent reproduction of the overall N_{r,odot}-pattern beyond Sn. For the lighter elements, from the Fe-group via Sr-Y-Zr to Ag, our HEW calculations indicate a transition from the need for clearly different sources (conditions/sites) to a possible co-production with r-process elements, provided that a range of entropies are contributing. This explains recent halo-star observations of a clear non-correlation of Zn and Ge and a weak correlation of Sr - Zr with heavier r-process elements. Moreover, new observational data on Ru and Pd seem to confirm also a partial correlation with Sr as well as the main r-process elements (e.g. Eu).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا