ﻻ يوجد ملخص باللغة العربية
Still today, the nucleosynthesis origin of Xe-H in presolar nanodiamonds is far from understood. Historically, possible explanations were proposed by a secondary neutron-burst process occurring in the He- or C/O-shells of a type-II supernova (SN-II), which are, however, not fully convincing in terms of modern nucleosynthesis conditions. Therefore, we have investigated Xe isotopic abundance features that may be diagnostic for differe
Recent observations indicate that >99% of the small bodies in the Solar System reside in its outer reaches --- in the Kuiper Belt and Oort Cloud. Kuiper Belt bodies are probably the best preserved representatives of the icy planetesimals that dominat
Tellurite glass fibers with embedded nanodiamond are attractive materials for quantum photonic applications. Reducing the loss of these fibers in the 600-800 nm wavelength range of nanodiamond fluorescence is essential to exploit the unique propertie
Stardust grains that originated in ancient stars and supernovae are recovered from meteorites and carry the detailed composition of their astronomical sites of origin. We present evidence that the majority of large ($mu$m-sized) meteoritic silicon ca
Stardust grains recovered from meteorites provide high-precision snapshots of the isotopic composition of the stellar environment in which they formed. Attributing their origin to specific types of stars, however, often proves difficult. Intermediate
We report a NanoSIMS search for presolar grains in the CM chondrites Asuka (A) 12169 and A12236. We found 90 presolar O-rich grains and 25 SiC grains in A12169, giving matrix-normalized abundances of 275 (+55/-50, 1$sigma$) ppm or, excluding an unusu