ﻻ يوجد ملخص باللغة العربية
While the high-entropy wind (HEW) of Type II supernovae remains one of the more promising sites for the rapid neutron-capture (r-) process, hydrodynamic simulations have yet to reproduce the astrophysical conditions under which the latter occurs. We have performed large-scale network calculations within an extended parameter range of the HEW, seeking to identify or to constrain the necessary conditions for a full reproduction of all r-process residuals N_{r,odot}=N_{odot}-N_{s,odot} by comparing the results with recent astronomical observations. A superposition of weighted entropy trajectories results in an excellent reproduction of the overall N_{r,odot}-pattern beyond Sn. For the lighter elements, from the Fe-group via Sr-Y-Zr to Ag, our HEW calculations indicate a transition from the need for clearly different sources (conditions/sites) to a possible co-production with r-process elements, provided that a range of entropies are contributing. This explains recent halo-star observations of a clear non-correlation of Zn and Ge and a weak correlation of Sr - Zr with heavier r-process elements. Moreover, new observational data on Ru and Pd seem to confirm also a partial correlation with Sr as well as the main r-process elements (e.g. Eu).
We have performed large-scale nucleosynthesis calculations within the high-entropy-wind (HEW) scenario of type II supernovae. The primary aim was to constrain the conditions for the production of the classical p-only isotopes of the light trans-Fe el
Presupernova evolution and explosive nucleosynthesis in massive stars for main-sequence masses from 13 $M_odot$ to 70 $M_odot$ are calculated. We examine the dependence of the supernova yields on the stellar mass, $^{12}C(alpha, gamma) ^{16}O}$ rate,
We explore the sensitivity of the nucleosynthesis of intermediate mass elements (28 < A < 80) in supernovae derived from massive stars to the nuclear reaction rates employed in the model. Two standard sources of reaction rate data (Woosley et al. 197
We investigate explosive nuclear burning in core collapse supernovae by coupling a tracer particle method to one and two-dimensional Eulerian hydrodynamic calculations. Adopting the most recent experimental and theoretical nuclear data, we compute th
The astrophysical site of the r-process is still uncertain, and a full exploration of the systematics of this process in terms of its dependence on nuclear properties from stability to the neutron drip-line within realistic stellar environments has s