ترغب بنشر مسار تعليمي؟ اضغط هنا

The ability to perform quantum error correction is a significant hurdle for scalable quantum information processing. A key requirement for multiple-round quantum error correction is the ability to dynamically extract entropy from ancilla qubits. Heat -bath algorithmic cooling is a method that uses quantum logic operations to move entropy from one subsystem to another, and permits cooling of a spin qubit below the closed system (Shannon) bound. Gamma-irradiated, $^{13}$C-labeled malonic acid provides up to 5 spin qubits: 1 spin-half electron and 4 spin-half nuclei. The nuclei are strongly hyperfine coupled to the electron and can be controlled either by exploiting the anisotropic part of the hyperfine interaction or by using pulsed electron-nuclear double resonance (ENDOR) techniques. The electron connects the nuclei to a heat-bath with a much colder effective temperature determined by the electrons thermal spin polarization. By accurately determining the full spin Hamiltonian and performing realistic algorithmic simulations, we show that an experimental demonstration of heat-bath algorithmic cooling beyond the Shannon bound is feasible in both 3-qubit and 5-qubit variants of this spin system. Similar techniques could be useful for polarizing nuclei in molecular or crystalline systems that allow for non-equilibrium optical polarization of the electron spin.
The intermediate valence compound YbAl$_3$ is known to undergo a hybridization process between itinerant and localized electrons. The resulting heavy Fermi liquid remains non-magnetic and non-superconducting. A microscopic understanding of the hybrid ization process in YbAl$_3$ is still lacking although some characteristic temperature and energy scales have been identified. Here we report results from novel spectroscopic measurements based on quasiparticle scattering. From the conductance spectra taken over a wide temperature range, we deduce that the band renormalization and hybridization process begins around 110 K, causing the conductance enhancement with a Fano background. This temperature, a new scale found in this work, is much higher than the coherence temperature (34 K). Our observation is in agreement with the slow crossover scenario discussed recently in the literature. The indirect hybridization gap appears to open concomitantly with the emergence of a coherent Fermi liquid. Thus, we suggest its measurement as a more rigorous way to define the coherence temperature than just taking the temperature for a resistivity peak.
64 - D.S. Carman , K. Park , B.A. Raue 2012
We report measurements of the exclusive electroproduction of $K^+Lambda$ and $K^+Sigma^0$ final states from an unpolarized proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions $sigma_U$, $sigma_{LT}$, $sigma_{TT}$, and $sigma_{LT}$ were extracted from the $Phi$-dependent differential cross sections acquired with a longitudinally polarized 5.499 GeV electron beam. The data span a broad range of momentum transfers $Q^2$ from 1.4 to 3.9 GeV$^2$, invariant energy $W$ from threshold to 2.6 GeV, and nearly the full center-of-mass angular range of the kaon. The separated structure functions provide an unprecedented data sample, which in conjunction with other meson photo- and electroproduction data, will help to constrain the higher-level analyses being performed to search for missing baryon resonances.
209 - K. Park , M. Guidal , R. W. Gothe 2012
The exclusive electroproduction of $pi^+$ above the resonance region was studied using the $rm{CEBAF}$ Large Acceptance Spectrometer ($rm{CLAS}$) at Jefferson Laboratory by scattering a 6 GeV continuous electron beam off a hydrogen target. The large acceptance and good resolution of $rm{CLAS}$, together with the high luminosity, allowed us to measure the cross section for the $gamma^* p to n pi^+$ process in 140 ($Q^2$, $x_B$, $t$) bins: $0.16<x_B<0.58$, 1.6 GeV$^2<$$Q^2$$<4.5$ GeV$^2$ and 0.1 GeV$^2<$$-t$$<5.3$ GeV$^2$. For most bins, the statistical accuracy is on the order of a few percent. Differential cross sections are compared to two theoretical models, based either on hadronic (Regge phenomenology) or on partonic (handbag diagram) degrees of freedom. Both can describe the gross features of the data reasonably well, but differ strongly in their ingredients. If the handbag approach can be validated in this kinematical region, our data contain the interesting potential to experimentally access transversity Generalized Parton Distributions.
We use point contact spectroscopy to probe $rm{AEFe_2As_2}$ ($rm{AE=Ca, Sr, Ba}$) and $rm{Fe_{1+y}Te}$. For $rm{AE=Sr, Ba}$ we detect orbital fluctuations above $T_S$ while for AE=Ca these fluctuations start below $T_S$. Co doping preserves the orbit al fluctuations while K doping suppresses it. The fluctuations are only seen at those dopings and temperatures where an in-plane resistive anisotropy is known to exist. We predict an in-plane resistive anisotropy of $rm{Fe_{1+y}Te}$ above $T_S$. Our data are examined in light of the recent work by W.-C. Lee and P. Phillips (arXiv:1110.5917v2). We also study how joule heating in the PCS junctions impacts the spectra. Spectroscopic information is only obtained from those PCS junctions that are free of heating effects while those PCS junctions that are in the thermal regime display bulk resistivity phenomenon.
The nature of the second order phase transition that occurs in URu2Si2 at 17.5 K remains puzzling despite intensive research over the past two and half decades. A key question emerging in the field is whether a hybridization gap between the renormali zed bands can be identified as the long-sought hidden order parameter. We report on the measurement of a hybridization gap in URu2Si2 employing a spectroscopic technique based on quasiparticle scattering across a ballistic metallic junction. The differential conductance exhibits an asymmetric double-peak structure, a clear signature for a Fano resonance in a Kondo lattice. The extracted hybridization gap opens well above the transition temperature, indicating that it is not the hidden order parameter. Our results put stringent constraints on the origin of the hidden order transition in URu2Si2 and demonstrate that quasiparticle scattering spectroscopy can probe the band renormalizations in a Kondo lattice via detection of a novel type of Fano resonance.
Point contact spectroscopy reveals a gap-like feature above the magnetic and structural transition temperatures for underdoped $Ba(Fe_{1-x}Co_x)_2As_2$, $SrFe_2As_2$ and $Fe_{1+y}Te$. The conductance spectrum starts showing an enhancement at temperat ures as high as 177 K for $BaFe_2As_2$ ($T_N$ $sim$ 132 K) and 250 K for $SrFe_2As_2$ ($T_N$ $sim$ 192 K). Possible origins for this enhancement are discussed in light of recent experimental claims of nematicity in these materials. We construct a modified phase diagram for Co-doped Ba122 showing a gap-like feature existing above $T_N$ and $T_S$ for the underdoped regime.
We investigate on-site Coulomb interaction energy between two 3p holes U(Ni 3p) of ultrathin NiO films on Ag(001) by both x-ray photoelectron spectroscopy and Auger electron spectroscopy. As the film becomes thin, U(Ni 3p) monotonically decreases, an d the difference of U(Ni 3p) for 1 monolayer (ML) film from that of bulk-like thick film delta U(Ni 3p) reaches ~ -2.2 eV. The observed delta U(Ni 3p) for 1 ML film is well reproduced by the differences of both the image potential and polarization energies between 1 ML film and the bulk-like thick film. Hence, the present results provide an evidence for the picture originally proposed by Duffy et al. [J. Phys. C: Solid State Phys., 16, 4087 (1983)] and Altieri et al. [Phys. Rev. B 59, R2517 (1999)]
We search for dimuon decays of a low mass particle in the decays B0->K*0 X and B0->rho X using a data sample of 657x10^6 B Bbar events collected with the Belle detector at the KEKB asymmetric-energy e^+ e^- collider. We find no evidence for such a pa rticle in the mass range from 212 MeV/c2 to 300 MeV/c2, and set upper limits on its branching fractions. In particular, we search for a particle with a mass of 214.3 MeV/c2 reported by the HyperCP experiment, and obtain upper limits on the products B(B0->K*0 X)xB(X->mu^+ mu^-) < 2.26 (2.27)x10^-8 and B(B0->rho0 X)xB(X->mu^+ mu^-) < 1.73 (1.73)x10^-8 at 90% C.L. for a scalar (vector) X particle.
74 - Xin Lu , W. K. Park , H. Q. Yuan 2009
Point-contact Andreev reflection spectroscopy (PCARS) is applied to investigate the gap structure in iron pnictide single crystal superconductors of the AFe_2As_2 (A=Ba, Sr) family (Fe-122). The observed point-contact junction conductance curves, G(V ), can be divided into two categories: one where Andreev reflection is present for both (Ba_{0.6}K_{0.4})Fe_2As_2 and Ba(Fe_{0.9}Co_{0.1})_2As_2, and the other with a V^{2/3} background conductance universally observed extending even up to 100 meV for Sr_{0.6}Na_{0.4}Fe_2As_2 and Sr(Fe_{0.9}Co_{0.1})_2As_2. The latter is also observed in point-contact junctions on the nonsuperconducting parent compound BaFe_2As_2. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors in the superconducting samples. For Ba_{0.6}K_{0.4}Fe_2As_2, double peaks due to Andreev reflection with strongly-sloping background are frequently observed for point-contacts on freshly-cleaved c-axis surfaces. If normalized by a background baseline and analyzed by the Blonder-Tinkham-Klapwijk model, the data show a gap size ~3.0-4.0 meV with 2Delta_0/k_BT_c ~ 2.0-2.6, consistent with the smaller gap size reported in the LnFeAsO family (Fe-1111). For the Ba(Fe_{0.9}Co_{0.1})_2As_2, G(V) curves typically display a zero-bias conductance peak.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا