ﻻ يوجد ملخص باللغة العربية
The ability to perform quantum error correction is a significant hurdle for scalable quantum information processing. A key requirement for multiple-round quantum error correction is the ability to dynamically extract entropy from ancilla qubits. Heat-bath algorithmic cooling is a method that uses quantum logic operations to move entropy from one subsystem to another, and permits cooling of a spin qubit below the closed system (Shannon) bound. Gamma-irradiated, $^{13}$C-labeled malonic acid provides up to 5 spin qubits: 1 spin-half electron and 4 spin-half nuclei. The nuclei are strongly hyperfine coupled to the electron and can be controlled either by exploiting the anisotropic part of the hyperfine interaction or by using pulsed electron-nuclear double resonance (ENDOR) techniques. The electron connects the nuclei to a heat-bath with a much colder effective temperature determined by the electrons thermal spin polarization. By accurately determining the full spin Hamiltonian and performing realistic algorithmic simulations, we show that an experimental demonstration of heat-bath algorithmic cooling beyond the Shannon bound is feasible in both 3-qubit and 5-qubit variants of this spin system. Similar techniques could be useful for polarizing nuclei in molecular or crystalline systems that allow for non-equilibrium optical polarization of the electron spin.
Heat-Bath Algorithmic cooling (HBAC) techniques provide ways to selectively enhance the polarization of target quantum subsystems. However, the cooling in these techniques are bounded. Here we report the first experimental observation of the HBAC coo
In a recent paper, PRL 114 100404, 2015, Raeisi and Mosca gave a limit for cooling with Heat-Bath Algorithmic Cooling (HBAC). Here we show how to exceed that limit by having correlation in the qubits-bath interaction.
Controlled preparation of highly pure quantum states is at the core of practical applications of quantum information science, from the state initialization of most quantum algorithms to a reliable supply of ancilla qubits that satisfy the fault-toler
We show experimental results demonstrating multiple rounds of heat-bath algorithmic cooling in a 3 qubit solid-state nuclear magnetic resonance quantum information processor. By dynamically pumping entropy out of the system of interest and into the h
A major problem facing the realisation of scalable solid-state quantum computing is that of overcoming decoherence - the process whereby phase information encoded in a qubit is lost as the qubit interacts with its environment. Due to the vast number