ترغب بنشر مسار تعليمي؟ اضغط هنا

62 - K. Matano , K. Arima , S. Maeda 2014
We report $^{195}$Pt-NMR and $^{75}$As-NQR measurements for the locally non-centrosymmetric superconductor SrPtAs where the As-Pt layer breaks inversion symmetry while globally the compound is centrosymmetric. The nuclear spin lattice relaxation rate $1/T_1$ shows a well-defined coherence peak below $T_c$ and decreases exponentially at low temperatures. The spin susceptibility measured by the Knight shift also decreases below $T_c$ down to $T<T_c/6$. These data together with the penetration depth obtained from the NMR spectra can be consistently explained by assuming a spin-singlet superconducting state with a full gap. Our results suggest that the spin-orbit coupling due to the local inversion-breaking is not large enough to bring about an exotic superconducting state, or the inter-layer hopping interaction is larger than the spin-orbit coupling.
331 - K. Matano , G.L. Sun , D.L. Sun 2009
We report the first ^{75}As-NMR study on a single crystal of the hole-doped iron-pnictide superconductor Ba_{0.7}K_{0.3}Fe_2As_{2} (T_c = 31.5 K). We find that the Fe antiferromagnetic spin fluctuations are anisotropic and are weaker compared to unde rdoped copper-oxides or cobalt-oxide superconductors. The spin lattice relaxation rate 1/T_1 decreases below T_c with no coherence peak and shows a step-wise variation at low temperatures, which is indicative of multiple superconducting gaps, as in the electron-doped Pr(La)FeAsO$_{1-x}$F$_{x}$. Furthermore, no evidence was obtained for a microscopic coexistence of a long-range magnetic and superconductivity.
96 - K. Matano , Z.A. Ren , X.L. Dong 2008
Since the discovery of high transition-temperature (Tc) superconductivity in copper oxides two decades ago, continuous efforts have been devoted to searching for similar phenomenon in other compounds. With the exception of MgB2 (Tc =39 K), however, T c is generally far lower than desired. Recently, breakthrough has been made in a new class of oxypnictide compounds. Following the initial discovery of superconductivity in LaO1-x FxFeAs (Tc =26 K), Tc onset has been raised to 55 K in ReO1-xFxFeAs (Re: Ce, Pr, Nd, Sm). Meanwhile, unravelling the nature of the energy associated with the formation of current-carrying pairs (Cooper pairs), referred to as the superconducting energy gap, is the first and vital step towards understanding why the superconductivity occurs at such high temperature and is also important for finding superconductors with still higher Tc. Here we show that, on the basis of the nuclear magnetic resonance (NMR) measurements in PrO0.89F0.11FeAs (Tc =45 K), the Cooper pair is in the spin-singlet state (two spins are anti-paralleled), with two energy gaps opening below Tc. The results strongly suggest the existence of nodes (zeros) in the gap. None of superconductors known to date has such unique gap features, although copper-oxides and MgB2 share part of them.
We report T_c and ^{59}Co nuclear quadrupole resonance (NQR) measurements on the cobalt oxide superconductor Na_{x}CoO_{2}cdot 1.3H_{2}O (T_c=4.8 K) under hydrostatic pressure (P) up to 2.36 GPa. T_c decreases with increasing pressure at an average r ate of -0.49pm0.09 K/GPa. At low pressures Pleq0.49 GPa, the decrease of T_c is accompanied by a weakening of the spin correlations at a finite wave vector and a reduction of the density of states (DOS) at the Fermi level. At high pressures above 1.93 GPa, however, the decrease of T_c is mainly due to a reduction of the DOS. These results indicate that the electronic/magnetic state of Co is primarily responsible for the superconductivity. The spin-lattice relaxation rate 1/T_1 at P=0.49 GPa shows a T^3 variation below T_c down to Tsim 0.12T_c, which provides compelling evidence for the presence of line nodes in the superconducting gap function.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا