ترغب بنشر مسار تعليمي؟ اضغط هنا

We examine the statistics of the low-redshift Lyman-alpha forest from smoothed particle hydrodynamic simulations in light of recent improvements in the estimated evolution of the cosmic ultraviolet background (UVB) and recent observations from the Co smic Origins Spectrograph (COS). We find that the value of the metagalactic photoionization rate required by our simulations to match the observed properties of the low-redshift Lyman-alpha forest is a factor of 5 larger than the value predicted by state-of-the art models for the evolution of this quantity. This mismatch results in the mean flux decrement of the Lyman-alpha forest being underpredicted by at least a factor of 2 (a 10-sigma discrepancy with observations) and a column density distribution of Lyman-alpha forest absorbers systematically and significantly elevated compared to observations over nearly two decades in column density. We examine potential resolutions to this mismatch and find that either conventional sources of ionizing photons (galaxies and quasars) must be significantly elevated relative to current observational estimates or our theoretical understanding of the low-redshift universe is in need of substantial revision.
We present the first definitive measurement of the absolute magnitude of RR Lyrae c-type variable stars (RRc) determined purely from statistical parallax. We use a sample of 247 RRc selected from the All Sky Automated Survey (ASAS) for which high-qua lity light curves, photometry and proper motions are available. We obtain high-resolution echelle spectra for these objects to determine radial velocities and abundances as part of the Carnegie RR Lyrae Survey (CARRS). We find that M_(V,RRc) = 0.52 +/- 0.11 at a mean metallicity of [Fe/H] = -1.59. This is to be compared with previous estimates for RRab stars (M_(V,RRab) = 0.75 +/- 0.13 and the only direct measurement of an RRc absolute magnitude (RZ Cephei, M_(V, RRc) = 0.27 +/- 0.17). We find the bulk velocity of the halo to be (W_pi, W_theta, W_z) = (10.9,34.9,7.2) km/s in the radial, rotational and vertical directions with dispersions (sigma_(W_pi), sigma_(W_theta), sigma_(W_z)) = (154.7, 103.6, 93.8) km/s. For the disk, we find (W_pi, W_theta, W_z) = (8.5, 213.2, -22.1) km/s with dispersions (sigma_(W_pi), sigma_(W_theta), sigma_(W_z)) = (63.5, 49.6, 51.3) km/s. Finally, we suggest that UCAC2 proper motion errors may be overestimated by about 25%
We present new limits on the ejection of metal-rich old-population hypervelocity stars from the Galactic center (GC) as probed by the SEGUE-2 survey. Our limits are a factor of 3-10 more stringent than previously reported, depending on stellar type. Compared to the known population of B-star ejectees, there can be no more than 30 times more metal-rich old-population F/G stars ejected from the GC. Because B stars comprise a tiny fraction of a normal stellar population, this places significant limits on a combination of the GC mass function and the ejection mechanism for hypervelocity stars. In the presence of a normal GC mass function, our results require an ejection mechanism that is about 5.5 times more efficient at ejecting B-stars compared to low-mass F/G stars.
We present spectroscopic confirmation of the Pisces Overdensity, also known as Structure J, a photometric overdensity of RR Lyrae stars discovered by the Sloan Digital Sky Survey (SDSS) at an estimated photometric distance of ~85kpc. We measure radia l velocities for 8 RR Lyrae stars within Pisces. We find that 5 of the 8 stars have heliocentric radial velocities within a narrow range of -87 km/s < v < -67 km/s, suggesting that the photometric overdensity is mainly due to a physically associated system, probably a dwarf galaxy or a disrupted galaxy. Two of the remaining 3 stars differ from one another by only 9 km/s, but it would be premature to identify them as a second system.
128 - Juna A. Kollmeier 2009
We present predictions for the fluorescent Lyman-alpha emission signature arising from photoionized, optically thick structures in Smoothed Particle Hydrodynamic (SPH) cosmological simulations of a Lambda-CDM universe using a Monte Carlo Lyman-alpha radiative transfer code. We calculate the expected Lyman-alpha image and 2-dimensional spectra for gas exposed to a uniform ultraviolet ionizing background as well as gas exposed additionally to the photoionizing radiation from a local quasar, after correcting for the self-shielding of hydrogen. As a test of our numerical methods and for application to current observations, we examine simplified analytic structures that are uniformly or anisotropically illuminated. We compare these results with recent observations. We discuss future observing campaigns on large telescopes and realistic strategies for detecting fluorescence owing to the ambient metagalactic ionization and in regions close to bright quasars. While it will take hundreds of hours on the current generation of telescopes to detect fluorescence caused by the ultraviolet background (UVB) alone, our calculations suggest that of order ten sources of quasar-induced fluorescent Lyman-alpha emission should be detectable after a 10 hour exposure in a 10 arcmin^2 field around a bright quasar. These observations will help probe the physical conditions in the densest regions of the intergalactic medium as well as the temporal light curves and isotropy of quasar radiation.
We present limits on the ejection of old-population HVS from a sample of over 290,000 stars selected from the SDSS. We derive the speed at the solar circle from the measured positions and radial velocities by assuming a radial orbit and adopting a si mple isothermal model of the Galactic halo, which enables us to identify candidate bound and unbound ejectees. We find 4 candidate bound F-stars from this sample, all with negative Galactocentric radial velocity (i.e., returning toward the GC). We additionally find 2 candidate unbound stars (one F and one G), however, existing proper motion measurements make these unlikely to be emerging from the GC. These data place an upper limit on the rate of ejection of old-population stars from the GC of ~45/Myr. Comparing to the rate for more massive B-star ejectees of ~0.5/Myr, our limit on the rate of ejection of old-population HVS shows that the mass function at the GC is not bottom-heavy and is consistent with being normal. Future targeted surveys of old-population HVS could determine if it is indeed top-heavy.
We present a method for obtaining accurate black hole (BH) mass estimates from the MgII emission line in active galactic nuclei (AGNs). Employing the large database of AGN measurements from the Sloan Digital Sky Survey (SDSS) presented by Shen et al. , we find that AGNs in the redshift range 0.3-0.9, for which a given object can have both H-beta and MgII line widths measured, display a modest but correctable discrepancy in MgII-based masses that correlates with the Eddington ratio. We use the SDSS database to estimate the probability distribution of the true (i.e., H-beta-based) mass given a measured MgII line width. These probability distributions are then applied to the SDSS measurements from Shen et al. across the entire MgII-accessible redshift range (0.3-2.2). We find that accounting for this residual correlation generally increases the dispersion of Eddington ratios by a small factor (~0.09 dex for the redshift and luminosity bins we consider). We continue to find that the intrinsic distribution of Eddington ratios for luminous AGNs is extremely narrow, 0.3-0.4 dex, as demonstrated by Kollmeier et al. Using the method we describe, MgII emission lines can be used with confidence to obtain BH mass estimates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا