ترغب بنشر مسار تعليمي؟ اضغط هنا

The Absolute Magnitude of RRc Variables From Statistical Parallax

483   0   0.0 ( 0 )
 نشر من قبل Juna A. Kollmeier
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first definitive measurement of the absolute magnitude of RR Lyrae c-type variable stars (RRc) determined purely from statistical parallax. We use a sample of 247 RRc selected from the All Sky Automated Survey (ASAS) for which high-quality light curves, photometry and proper motions are available. We obtain high-resolution echelle spectra for these objects to determine radial velocities and abundances as part of the Carnegie RR Lyrae Survey (CARRS). We find that M_(V,RRc) = 0.52 +/- 0.11 at a mean metallicity of [Fe/H] = -1.59. This is to be compared with previous estimates for RRab stars (M_(V,RRab) = 0.75 +/- 0.13 and the only direct measurement of an RRc absolute magnitude (RZ Cephei, M_(V, RRc) = 0.27 +/- 0.17). We find the bulk velocity of the halo to be (W_pi, W_theta, W_z) = (10.9,34.9,7.2) km/s in the radial, rotational and vertical directions with dispersions (sigma_(W_pi), sigma_(W_theta), sigma_(W_z)) = (154.7, 103.6, 93.8) km/s. For the disk, we find (W_pi, W_theta, W_z) = (8.5, 213.2, -22.1) km/s with dispersions (sigma_(W_pi), sigma_(W_theta), sigma_(W_z)) = (63.5, 49.6, 51.3) km/s. Finally, we suggest that UCAC2 proper motion errors may be overestimated by about 25%

قيم البحث

اقرأ أيضاً

We present new statistical parallax solutions for the absolute magnitude and kinematics of RR Lyrae stars. New proper motion, radial velocity, and abundance data are used; the new data set is 50% larger, and of higher quality, than previously availab le data sets. Based on an a priori kinematic study, we separate the stars into halo and thick disk sub-populations. Statistical parallax solutions on these sub-samples yield M_V(RR) = +0.71 +/- 0.12 at <[Fe/H]> = -1.61 for the halo (162 stars), and M_V(RR) = +0.79 +/- 0.30 at <[Fe/H]> = -0.76 for the thick disk (51 stars). The solutions yield kinematic parameters (solar motion and velocity ellipsoid) in good agreement with estimates of the halo and thick disk kinematics derived from both RR Lyrae stars and other stellar tracers. Monte Carlo simulations indicate that the solutions are accurate, and that the errors may be smaller than the estimates above. The simulations reveal a small bias in the disk solutions, and appropriate corrections are derived. The large uncertainty in the disk M_V(RR) prevents ascertaining the slope of the M_V(RR)-[Fe/H] relation. We find that (1) the distance to the Galactic Center is 7.6 +/- 0.4 kpc; (2) the mean age of the 17 oldest Galactic globular clusters is 16.5 _{-1.9}^{+2.1} Gyr; and (3) the distance modulus of the LMC is 18.28 +/- 0.13 mag. Estimates of H_0 which are based on an LMC distance modulus of 18.50 (e.g., Cepheid studies) increase by 10% if they are recalibrated to match our LMC distance modulus.
We present new empirical calibrations of the absolute magnitude of the tip of the red giant branch (TRGB) in the optical I and near-infrared J, H, and K bands in terms of the (V-K)_0, (V-H)_0, and (J-K)_0 colors of the red giant branch. Our calibrati ons are based on the measurements in 19 fields in the Large and Small Magellanic Clouds, which span a wide (V-K)_0 color range of the brightest part of the red giant branch. We use a simple edge detection technique based on the comparison of the star count difference in two adjacent bins with the estimated Poisson noise. Further, we include the reddening and geometrical corrections, as well as the precise and accurate to 2% distance to the Large Magellanic Cloud. The calibration based on a (V-K) colors can be a robust tool to calculate with a great precision the absolute magnitude of the TRGB.
We investigate the properties of K0V stars with Hipparcos parallaxes and spectral types taken from the Michigan Spectral Survey. The sample of 200 objects allows the empirical investigation of the magnitude selection (Malmquist) bias, which appears c learly present. By selecting those objects that are not affected by bias, we find a mean absolute magnitude of Mv~5.7, a downward revision from 5.9 mag. listed in Schmidt-Kaler (1982). Some objects have absolute magnitudes far brighter than Mv~5.7, and it is suggested that these objects (~20% of the total sample) are K0IV stars which may have been mis-classified as a K0V star. The presence of the Malmquist bias in even this high quality sample suggests that no sample can be expected to be bias-free.
We study the evolution of the colour-magnitude relation for galaxies in the VIMOS Public Extragalactic Redshift Survey (VIPERS) by introducing the concept of the bright edge, and use this to derive constraints on the quenching of star formation activ ity in galaxies over the redshift range $0.5 < z < 1.1$. The bright-edge of the colour-magnitude diagram evolves with little dependence on galaxy colour, and therefore on the amount of star formation taking place in bright galaxies. We modelled this evolution with delayed exponential star formation histories (SFHs), to better understand the time-scale of the turn-off in star formation activity. We show that using SFHs without quenching, the transition from the blue cloud to the red sequence is too slow. This indicates that a scenario purely driven by the consumption of the gas inside each galaxy does not reproduce the observed evolution of the colour-magnitude bright edge. Among the quenching scenarios explored, the one that best matches the observations assumes that galaxies stop their star formation at a randomly selected time with a uniform distribution up to $2.5$ Gyr. We argue that quenching is required over a wide range of stellar masses. Qualitatively similar evolution of the bright edge is found in the predictions of a semi-analytical galaxy formation model, but quantitatively there are marked differences with the observations. This illustrates the utility of the bright edge as a test of galaxy formation models. The evolution changes and no longer matches the observed trend if feedback from heating by active galactic nuclei is turned off.
Here we measure the absolute magnitude distributions (H-distribution) of the dynamically excited and quiescent (hot and cold) Kuiper Belt objects (KBOs), and test if they share the same H-distribution as the Jupiter Trojans. From a compilation of all useable ecliptic surveys, we find that the KBO H-distributions are well described by broken power-laws. The cold population has a bright-end slope, $alpha_{textrm{1}}=1.5_{-0.2}^{+0.4}$, and break magnitude, $H_{textrm{B}}=6.9_{-0.2}^{+0.1}$ (r-band). The hot population has a shallower bright-end slope of, $alpha_{textrm{1}}=0.87_{-0.2}^{+0.07}$, and break magnitude $H_{textrm{B}}=7.7_{-0.5}^{+1.0}$. Both populations share similar faint end slopes of $alpha_2sim0.2$. We estimate the masses of the hot and cold populations are $sim0.01$ and $sim3times10^{-4} mbox{ M$_{bigoplus}$}$. The broken power-law fit to the Trojan H-distribution has $alpha_textrm{1}=1.0pm0.2$, $alpha_textrm{2}=0.36pm0.01$, and $H_{textrm{B}}=8.3$. The KS test reveals that the probability that the Trojans and cold KBOs share the same parent H-distribution is less than 1 in 1000. When the bimodal albedo distribution of the hot objects is accounted for, there is no evidence that the H-distributions of the Trojans and hot KBOs differ. Our findings are in agreement with the predictions of the Nice model in terms of both mass and H-distribution of the hot and Trojan populations. Wide field survey data suggest that the brightest few hot objects, with $H_{textrm{r}}lesssim3$, do not fall on the steep power-law slope of fainter hot objects. Under the standard hierarchical model of planetesimal formation, it is difficult to account for the similar break diameters of the hot and cold populations given the low mass of the cold belt.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا