ترغب بنشر مسار تعليمي؟ اضغط هنا

Space-time modulated metasurfaces have attracted significant attention due to the additional degree of freedom in manipulating the electromagnetic (EM) waves in both space and time domains. However, the existing techniques have limited wave control c apabilities, leading to just a few feasible schemes like regulation of only one specific harmonic. Here, we propose to realize independent manipulations of arbitrarily dual harmonics and their wave behaviors using a space-time-coding (STC) digital metasurface. By employing different STC sequences to the reflection phase of the metasurface, independent phase-pattern configurations of two desired harmonics can be achieved simultaneously, which further leads to independent beam shaping at the two harmonic frequencies. An analytical theory is developed to offer the physical insights in the arbitrary dual-harmonic manipulations of spectra and spatial beams, which is verified by experiments with good agreements. The presented STC strategy provides a new way to design multifunctional programmable systems, which will find potential applications such as cognitive radar and multi-user wireless communications.
Reconfigurable intelligent surface (RIS) is a new paradigm that has great potential to achieve cost-effective, energy-efficient information modulation for wireless transmission, by the ability to change the reflection coefficients of the unit cells o f a programmable metasurface. Nevertheless, the electromagnetic responses of the RISs are usually only phase-adjustable, which considerably limits the achievable rate of RIS-based transmitters. In this paper, we propose an RIS architecture to achieve amplitude-and-phase-varying modulation, which facilitates the design of multiple-input multiple-output (MIMO) quadrature amplitude modulation (QAM) transmission. The hardware constraints of the RIS and their impacts on the system design are discussed and analyzed. Furthermore, the proposed approach is evaluated using our prototype which implements the RIS-based MIMO-QAM transmission over the air in real time.
Many emerging technologies, such as ultra-massive multiple-input multiple-output (UM-MIMO), terahertz (THz) communications are under active discussion as promising technologies to support the extremely high access rate and superior network capacity i n the future sixth-generation (6G) mobile communication systems. However, such technologies are still facing many challenges for practical implementation. In particular, UM-MIMO and THz communication require extremely large number of radio frequency (RF) chains, and hence suffering from prohibitive hardware cost and complexity. In this article, we introduce a new paradigm to address the above issues, namely wireless communication enabled by programmable metasurfaces, by exploiting the powerful capability of metasurfaces in manipulating electromagnetic waves. We will first introduce the basic concept of programmable metasurfaces, followed by the promising paradigm shift in future wireless communication systems enabled by programmable metasurfaces. In particular, we propose two prospective paradigms of applying programmable metasurfaces in wireless transceivers: namely RF chain-free transmitter and space-down-conversion receiver, which both have great potential to simplify the architecture and reduce the hardware cost of future wireless transceivers. Furthermore, we present the design architectures, preliminary experimental results and main advantages of these new paradigms and discuss their potential opportunities and challenges toward ultra-massive 6G communications with low hardware complexity, low cost, and high energy efficiency.
In this letter, a wireless transmitter using the new architecture of programmable metasurface is presented. The proposed transmitter does not require any filter, nor wideband mixer or wideband power amplifier, thereby making it a promising hardware a rchitecture for cost-effective wireless communications systems in the future. Using experimental results, we demonstrate that a programmable metasurface-based 8-phase shift-keying (8PSK) transmitter with 8*32 phase adjustable unit cells can achieve 6.144 Mbps data rate over the air at 4.25 GHz with a comparable bit error rate (BER) performance as the conventional approach without channel coding, but with less hardware complexity.
Metasurfaces have drawn significant attentions due to their superior capability in tailoring electromagnetic waves with a wide frequency range, from microwave to visible light. Recently, programmable metasurfaces have demonstrated the ability of mani pulating the amplitude or phase of electromagnetic waves in a programmable manner in real time, which renders them especially appealing in the applications of wireless communications. To practically demonstrate the feasibility of programmable metasurfaces in future communication systems, in this paper, we design and realize a novel metasurface-based wireless communication system. By exploiting the dynamically controllable property of programmable metasurface, we firstly introduce the fundamental principle of the metasurface-based wireless communication system design. We then present the design, implementation and experimental evaluation of the proposed metasurface-based wireless communication system with a prototype, which realizes single carrier quadrature phase shift keying (QPSK) transmission over the air. In the developed prototype, the phase of the reflected electromagnetic wave of programmable metasurface is directly manipulated in real time according to the baseband control signal, which achieves 2.048 Mbps data transfer rate with video streaming transmission over the air. Experimental result is provided to compare the performance of the proposed metasurface-based architecture against the conventional one. With the slight increase of the transmit power by 5 dB, the same bit error rate (BER) performance can be achieved as the conventional system in the absence of channel coding. Such a result is encouraging considering that the metasurface-based system has the advantages of low hardware cost and simple structure, thus leading to a promising new architecture for wireless communications.
77 - Jie Zhao , Xi Yang , Jun Yan Dai 2018
Modern wireless communication is one of the most important information technologies, but its system architecture has been unchanged for many years. Here, we propose a much simpler architecture for wireless communication systems based on metasurface. We firstly propose a time-domain digital coding metasurface to reach a simple but efficient method to manipulate spectral distributions of harmonics. Under dynamic modulations of phases on surface reflectivity, we could achieve accurate controls to different harmonics in a programmable way to reach many unusual functions like frequency cloaking and velocity illusion, owing to the temporal gradient introduced by digital signals encoded by 0 and 1 sequences. A theoretical model is presented and experimentally validated to reveal the nonlinear process. Based on the time-domain digital coding metasurface, we propose and realize a new wireless communication system in binary frequency-shift keying (BFSK) frame, which has much more simplified architecture than the traditional BFSK with excellent performance for real-time message transmission. The presented work, from new concept to new system, will find important applications in modern information technologies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا