ترغب بنشر مسار تعليمي؟ اضغط هنا

We evaluate the charge noise acting on a GaAs/GaAlAs based semiconductor double quantum dot dipole-coupled to the voltage oscillations of a superconducting transmission line resonator. The in-phase ($I$) and the quadrature ($Q$) components of the mic rowave tone transmitted through the resonator are sensitive to charging events in the surrounding environment of the double dot with an optimum sensitivity of $8.5times10^{-5} mbox{e}/sqrt{mbox{Hz}}$. A low frequency $1/f$ type noise spectrum combined with a white noise level of $6.6times10^{-6}$ $mbox{e}^2/mbox{Hz}$ above $1$ Hz is extracted, consistent with previous results obtained with quantum point contact charge detectors on similar heterostructures. The slope of the $1/f$ noise allows to extract a lower bound for the double-dot charge qubit dephasing rate which we compare to the one extracted from a Jaynes-Cummings Hamiltonian approach. The two rates are found to be similar emphasizing that charge noise is the main source of dephasing in our system.
We have realized a hybrid solid-state quantum device in which a single-electron semiconductor double quantum dot is dipole coupled to a superconducting microwave frequency transmission line resonator. The dipolar interaction between the two entities manifests itself via dispersive and dissipative effects observed as frequency shifts and linewidth broadenings of the photonic mode respectively. A Jaynes-Cummings Hamiltonian master equation calculation is used to model the combined system response and allows for determining both the coherence properties of the double quantum dot and its interdot tunnel coupling with high accuracy. The value and uncertainty of the tunnel coupling extracted from the microwave read-out technique are compared to a standard quantum point contact charge detection analysis. The two techniques are found to be consistent with a superior precision for the microwave experiment when tunneling rates approach the resonator eigenfrequency. Decoherence properties of the double dot are further investigated as a function of the number of electrons inside the dots. They are found to be similar in the single-electron and many-electron regimes suggesting that the density of the confinement energy spectrum plays a minor role in the decoherence rate of the system under investigation.
By coupling a quantum detector, a superconductor-insulator-superconductor junction, to a Josephson junction textit{via} a resonant circuit we probe the high frequency properties, namely the ac complex admittance and the current fluctuations of the Jo sephson junction at the resonant frequencies. The admittance components show frequency dependent singularities related to the superconducting density of state while the noise exhibits a strong frequency dependence, consistent with theoretical predictions. The circuit also allows to probe separately the emission and absorption noise in the quantum regime of the superconducting resonant circuit at equilibrium. At low temperature the resonant circuit exhibits only absorption noise related to zero point fluctuations, whereas at higher temperature emission noise is also present.
The current emission noise of a carbon nanotube quantum dot in the Kondo regime is measured at frequencies $ u$ of the order or higher than the frequency associated with the Kondo effect $k_B T_K/h$, with $T_K$ the Kondo temperature. The carbon nanot ube is coupled via an on-chip resonant circuit to a quantum noise detector, a superconductor-insulator-superconductor junction. We find for $h u approx k_B T_K$ a Kondo effect related singularity at a voltage bias $eV approx h u $, and a strong reduction of this singularity for $h u approx 3 k_B T_K$, in good agreement with theory. Our experiment constitutes a new original tool for the investigation of the non-equilibrium dynamics of many-body phenomena in nanoscale devices.
Using a quantum detector, a superconductor-insulator-superconductor junction, we probe separately the emission and absorption noise in the quantum regime of a superconducting resonant circuit at equilibrium. At low temperature the resonant circuit ex hibits only absorption noise related to zero point fluctuations whereas at higher temperature emission noise is also present. By coupling a Josephson junction, biased above the superconducting gap, to the same resonant circuit, we directly measure the noise power of quasiparticles tunneling through the junction at two resonance frequencies. It exhibits a strong frequency dependence, consistent with theoretical predictions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا