ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluating charge noise acting on semiconductor quantum dots in the circuit quantum electrodynamics architecture

202   0   0.0 ( 0 )
 نشر من قبل Julien Basset
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We evaluate the charge noise acting on a GaAs/GaAlAs based semiconductor double quantum dot dipole-coupled to the voltage oscillations of a superconducting transmission line resonator. The in-phase ($I$) and the quadrature ($Q$) components of the microwave tone transmitted through the resonator are sensitive to charging events in the surrounding environment of the double dot with an optimum sensitivity of $8.5times10^{-5} mbox{e}/sqrt{mbox{Hz}}$. A low frequency $1/f$ type noise spectrum combined with a white noise level of $6.6times10^{-6}$ $mbox{e}^2/mbox{Hz}$ above $1$ Hz is extracted, consistent with previous results obtained with quantum point contact charge detectors on similar heterostructures. The slope of the $1/f$ noise allows to extract a lower bound for the double-dot charge qubit dephasing rate which we compare to the one extracted from a Jaynes-Cummings Hamiltonian approach. The two rates are found to be similar emphasizing that charge noise is the main source of dephasing in our system.



قيم البحث

اقرأ أيضاً

Cavity quantum electrodynamics allows one to study the interaction between light and matter at the most elementary level. The methods developed in this field have taught us how to probe and manipulate individual quantum systems like atoms and superco nducting quantum bits with an exquisite accuracy. There is now a strong effort to extend further these methods to other quantum systems, and in particular hybrid quantum dot circuits. This could turn out to be instrumental for a noninvasive study of quantum dot circuits and a realization of scalable spin quantum bit architectures. It could also provide an interesting platform for quantum simulation of simple fermion-boson condensed matter systems. In this short review, we discuss the experimental state of the art for hybrid circuit quantum electrodynamics with quantum dots, and we present a simple theoretical modeling of experiments.
We study a model which can describe a superconducting single electron transistor (SSET) or a double quantum dot coupled to transmission-line oscillator. In both cases the degree of freedom is given by a charged particle, which couples strongly to the electromagnetic environment or phonons. We consider the case where a lasing condition is established and study the dependence of the average photon number in the resonator on the spectral function of the electromagnetic environment. We focus on three important cases: a strongly coupled environment with a small cut-off frequency, a structured environment peaked at a specific frequency and 1/f-noise. We find that the electromagnetic environment can have a substantial impact on the photon creation. Resonance peaks are in general broadened and additional resonances can appear.
137 - C. H. Yang , A. Rossi , N. S. Lai 2014
Semiconductor quantum dots provide a two-dimensional analogy for real atoms and show promise for the implementation of scalable quantum computers. Here, we investigate the charge configurations in a silicon metal-oxide-semiconductor double quantum do t tunnel coupled to a single reservoir of electrons. By operating the system in the few-electron regime, the stability diagram shows hysteretic tunnelling events that depend on the history of the dots charge occupancy. We present a model which accounts for the observed hysteretic behaviour by extending the established description for transport in double dots coupled to two reservoirs. We demonstrate that this type of device operates like a single-electron memory latch.
We theoretically study single and two-qubit dynamics in the circuit QED architecture. We focus on the current experimental design [Wallraff et al., Nature 431, 162 (2004); Schuster et al., Nature 445, 515 (2007)] in which superconducting charge qubit s are capacitively coupled to a single high-Q superconducting coplanar resonator. In this system, logical gates are realized by driving the resonator with microwave fields. Advantages of this architecture are that it allows for multi-qubit gates between non-nearest qubits and for the realization of gates in parallel, opening the possibility of fault-tolerant quantum computation with superconduting circuits. In this paper, we focus on one and two-qubit gates that do not require moving away from the charge-degeneracy `sweet spot. This is advantageous as it helps to increase the qubit dephasing time and does not require modification of the original circuit QED. However these gates can, in some cases, be slower than those that do not use this constraint. Five types of two-qubit gates are discussed, these include gates based on virtual photons, real excitation of the resonator and a gate based on the geometric phase. We also point out the importance of selection rules when working at the charge degeneracy point.
Electron spins in silicon have long coherence times and are a promising qubit platform. However, electric field noise in semiconductors poses a challenge for most single- and multi-qubit operations in quantum-dot spin qubits. Here, we investigate the dependence of low-frequency charge noise spectra on temperature and aluminum-oxide gate dielectric thickness in Si/SiGe quantum dots with overlapping gates. We find that charge noise increases with aluminum oxide thickness. We also find strong dot-to-dot variations in the temperature dependence of the noise magnitude and spectrum. These findings suggest that each quantum dot experiences noise caused by a distinct ensemble of two-level systems, each of which has a non-uniform distribution of thermal activation energies. Taken together, our results suggest that charge noise in Si/SiGe quantum dots originates at least in part from a non-uniform distribution of two-level systems near the surface of the semiconductor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا