ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the Josephson radiation emitted by a junction made of a quantum dot coupled to two conventional superconductors. Close to resonance, the particle-hole symmetric Andreev states that form in the junction are detached from the continuum a bove the superconducting gap in the leads, while a gap between them opens near the Fermi level. Under voltage bias, we formulate a stochastic model that accounts for non-adiabatic processes, which change the occupations of the Andreev states. This model allows calculating the current noise spectrum and determining the Fano factor. Analyzing the finite-frequency noise, we find that the model may exhibit either an integer or a fractional AC Josephson effect, depending on the bias voltage and the size of the gaps in the Andreev spectrum. Our results assess the limitations in using the fractional Josephson radiation as a probe of topology.
We show that the annihilation dynamics of excess quasi-particles in superconductors may result in the spontaneous formation of large spin-polarized clusters. This presents a novel scenario for spontaneous spin polarization. We estimate the relevant s cales for aluminum, finding the feasibility of clusters with total spin $S simeq 10^4 hbar$ that could be spread over microns. The fluctuation dynamics of such large spins may be detected by measuring the flux noise in a loop hosting a cluster.
The Josephson current flowing in a junction between two superconductors is a striking manifestation of macroscopic quantum coherence, with applications in metrology and quantum information. This equilibrium current is related with the formation of An dreev states localized in the junction, whose energy depends periodically on the superconducting phase difference. Topology emerged as a guide for predicting exotic properties of Andreev states. In particular, topological superconductors host Majorana modes at their ends. Then, in a junction with such leads, the hybridization of two Majorana modes results in an Andreev state with a period-doubling of its energy-phase dependence. Furthermore, topologically protected crossings between Andreev states in junctions with more than two leads may be revealed through a quantized transconductance. The prediction motivated recent efforts to fabricate multi-terminal junctions. Here we combine both topological effects to predict a robust non-vanishing quantized transconductance in trijunctions with topological leads. Such devices are envisioned to reveal the anyonic nature of Majorana states through their braiding. Our prediction can be used to assess that a given junction is indeed suitable to perform its braiding function.
Experimentally and mysteriously, the concentration of quasiparticles in a gapped superconductor at low temperatures always by far exceeds its equilibrium value. We study the dynamics of localized quasiparticles in superconductors with a spatially flu ctuating gap edge. The competition between phonon-induced quasiparticle recombination and generation by a weak non-equilibrium agent results in an upper bound for the concentration that explains the mystery.
We study the effect of a magnetic field on the current-phase relation of a topological Josephson junction formed by connecting two superconductors through the helical edge states of a quantum spin-Hall insulator. We predict that the Zeeman effect alo ng the spin quantization axis of the helical edges results in an anomalous Josephson relation that allows for a supercurrent to flow in the absence of superconducting phase bias. We relate the associated field-tunable phase shift $phi_0$ in the Josephson relation of such a $phi_0$-junction to the existence of a so-called helical superconductivity, which may result from the interplay of the Zeeman effect and spin-orbit coupling. We analyze the dependence of the magneto-supercurrent on the junction length and discuss its observability in suitably designed hybrid structures subject to an in-plane magnetic field.
We investigate bosonic atoms or molecules interacting via dipolar interactions in a planar array of one-dimensional tubes. We consider the situation in which the dipoles are oriented perpendicular to the tubes by an external field. We find various qu antum phases reaching from a `sliding Luttinger liquid phase in which the tubes remain Luttinger liquids to a two-dimensional charge density wave ordered phase. Two different kinds of charge density wave order occur: a stripe phase in which the bosons in different tubes are aligned and a checkerboard phase. We further point out how to distinguish the occurring phases experimentally.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا