ترغب بنشر مسار تعليمي؟ اضغط هنا

We discuss the successes and limitations of statistical sampling for a sequence of models studied in the context of lattice QCD and emphasize the need for new methods to deal with finite-density and real-time evolution. We show that these lattice mod els can be reformulated using tensorial methods where the field integrations in the path-integral formalism are replaced by discrete sums. These formulations involve various types of duality and provide exact coarse-graining formulas which can be combined with truncations to obtain practical implementations of the Wilson renormalization group program. Tensor reformulations are naturally discrete and provide manageable transfer matrices. Combining truncations with the time continuum limit, we derive Hamiltonians suitable to perform quantum simulation experiments, for instance using cold atoms, or to be programmed on existing quantum computers. We review recent progress concerning the tensor field theory treatment of non-compact scalar models, supersymmetric models, economical four-dimensional algorithms, noise-robust enforcement of Gausss law, symmetry preserving truncations and topological considerations.
We study Kahler-Dirac fermions on Euclidean dynamical triangulations. This fermion formulation furnishes a natural extension of staggered fermions to random geometries without requring vielbeins and spin connections. We work in the quenched approxima tion where the geometry is allowed to fluctuate but there is no back-reaction from the matter on the geometry. By examining the eigenvalue spectrum and the masses of scalar mesons we find evidence for a four fold degeneracy in the fermion spectrum in the large volume, continuum limit. It is natural to associate this degeneracy with the well known equivalence in continuum flat space between the Kahler-Dirac fermion and four copies of a Dirac fermion. Lattice effects then lift this degeneracy in a manner similar to staggered fermions on regular lattices. The evidence that these discretization effects vanish in the continuum limit suggests both that lattice continuum Kahler-Dirac fermions are recovered at that point, and that this limit truly corresponds to smooth continuum geometries. One additional advantage of the Kahler-Dirac action is that it respects an exact $U(1)$ symmetry on any random triangulation. This $U(1)$ symmetry is related to continuum chiral symmetry. By examining fermion bilinear condensates we find strong evidence that this $U(1)$ symmetry is not spontaneously broken in the model at order the Planck scale. This is a necessary requirement if models based on dynamical triangulations are to provide a valid ultraviolet complete formulation of quantum gravity.
We consider the four-dimensional Euclidean dynamical triangulations lattice model of quantum gravity based on triangulations of $S^{4}$. We couple it minimally to a scalar field in the quenched approximation. Our results suggest a multiplicative reno rmalization for the mass of the scalar field which is consistent with the shift symmetry of the discretized lattice action. We discuss the possibility of measuring the mass anomalous dimension and the gravitational binding energy between two scalar test particles, where a negative bound state energy would imply that this model has an attractive gravitational force.
We show that the Polyakov loop of the two-dimensional lattice Abelian Higgs model can be calculated using the tensor renormalization group approach. We check the accuracy of the results using standard Monte Carlo simulations. We show that the energy gap produced by the insertion of the Polyakov loop obeys universal finite-size scaling which persists in the time continuum limit. We briefly discuss the relevance of these results for quantum simulations.
We present our progress on a study of the $O(3)$ model in two-dimensions using the Tensor Renormalization Group method. We first construct the theory in terms of tensors, and show how to construct $n$-point correlation functions. We then give results for thermodynamic quantities at finite and infinite volume, as well as 2-point correlation function data. We discuss some of the advantages and challenges of tensor renormalization and future directions in which to work.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا