ترغب بنشر مسار تعليمي؟ اضغط هنا

Tensor field theory with applications to quantum computing

141   0   0.0 ( 0 )
 نشر من قبل Yannick Meurice
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the successes and limitations of statistical sampling for a sequence of models studied in the context of lattice QCD and emphasize the need for new methods to deal with finite-density and real-time evolution. We show that these lattice models can be reformulated using tensorial methods where the field integrations in the path-integral formalism are replaced by discrete sums. These formulations involve various types of duality and provide exact coarse-graining formulas which can be combined with truncations to obtain practical implementations of the Wilson renormalization group program. Tensor reformulations are naturally discrete and provide manageable transfer matrices. Combining truncations with the time continuum limit, we derive Hamiltonians suitable to perform quantum simulation experiments, for instance using cold atoms, or to be programmed on existing quantum computers. We review recent progress concerning the tensor field theory treatment of non-compact scalar models, supersymmetric models, economical four-dimensional algorithms, noise-robust enforcement of Gausss law, symmetry preserving truncations and topological considerations.

قيم البحث

اقرأ أيضاً

We present a study of the IR behaviour of a three-dimensional super-renormalisable quantum field theory (QFT) consisting of a scalar field in the adjoint of $SU(N)$ with a $varphi^4$ interaction. A bare mass is required for the theory to be massless at the quantum level. In perturbation theory the critical mass is ambiguous due to infrared (IR) divergences and we indeed find that at two-loops in lattice perturbation theory the critical mass diverges logarithmically. It was conjectured long ago in [Jackiw 1980, Appelquist 1981] that super-renormalisable theories are nonperturbatively IR finite, with the coupling constant playing the role of an IR regulator. Using a combination of Markov-Chain-Monte-Carlo simulations of the lattice-regularised theory, both frequentist and Bayesian data analysis, and considerations of a corresponding effective theory we gather evidence that this is indeed the case.
We establish a dictionary between group field theory (thus, spin networks and random tensors) states and generalized random tensor networks. Then, we use this dictionary to compute the R{e}nyi entropy of such states and recover the Ryu-Takayanagi for mula, in two different cases corresponding to two different truncations/approximations, suggested by the established correspondence.
This notebook tutorial demonstrates a method for sampling Boltzmann distributions of lattice field theories using a class of machine learning models known as normalizing flows. The ideas and approaches proposed in arXiv:1904.12072, arXiv:2002.02428, and arXiv:2003.06413 are reviewed and a concrete implementation of the framework is presented. We apply this framework to a lattice scalar field theory and to U(1) gauge theory, explicitly encoding gauge symmetries in the flow-based approach to the latter. This presentation is intended to be interactive and working with the attached Jupyter notebook is recommended.
The only known way to study quantum field theories in non-perturbative regimes is using numerical calculations regulated on discrete space-time lattices. Such computations, however, are often faced with exponential signal-to-noise challenges that ren der key physics studies untenable even with next generation classical computing. Here, a method is presented by which the output of small-scale quantum computations on Noisy Intermediate-Scale Quantum era hardware can be used to accelerate larger-scale classical field theory calculations through the construction of optimized interpolating operators. The method is implemented and studied in the context of the 1+1-dimensional Schwinger model, a simple field theory which shares key features with the standard model of nuclear and particle physics.
Gauge theories are of paramount importance in our understanding of fundamental constituents of matter and their interactions. However, the complete characterization of their phase diagrams and the full understanding of non-perturbative effects are st ill debated, especially at finite charge density, mostly due to the sign-problem affecting Monte Carlo numerical simulations. Here, we report the Tensor Network simulation of a three dimensional lattice gauge theory in the Hamiltonian formulation including dynamical matter: Using this sign-problem-free method, we simulate the ground states of a compact Quantum Electrodynamics at zero and finite charge densities, and address fundamental questions such as the characterization of collective phases of the model, the presence of a confining phase at large gauge coupling, and the study of charge-screening effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا