ترغب بنشر مسار تعليمي؟ اضغط هنا

We report a technique based on Fresnel diffraction with white illumination that permits the resolution of capillary surface patterns of less than 100 nanometers. We investigate Rayleigh Plateaux like instability on a viscoelastic capillary bridge and show that we can overcome the resolution limit of optical microscopy. The viscoelastic filaments are approximately 20 microns thick at the end of the thinning process when the instability sets in. The wavy distortions grow exponentially in time and the pattern is resolved by an image treatment that is based on an approximation of the measured rising flank of the first Fresnel peak.
We investigated the yield stress and the apparent viscosity of sand with and without small amounts of liquid. By pushing the sand through a tube with an enforced Poiseuille like profile we minimize the effect of avalanches and shear localization. We find that the system starts to flow when a critical shear of the order of one particle diameter is exceeded. In contrast to common believe, we observe that the resistance against the flow of wet sand is much smaller than that of dry sand. For the dissipative flow we propose a non-equilibrium state equation for granular fluids.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا