ترغب بنشر مسار تعليمي؟ اضغط هنا

We describe the Amber tool for proving and refuting the termination of a class of probabilistic while-programs with polynomial arithmetic, in a fully automated manner. Amber combines martingale theory with properties of asymptotic bounding functions and implements relax
This paper proposes various new analysis techniques for Bayes networks in which conditional probability tables (CPTs) may contain symbolic variables. The key idea is to exploit scalable and powerful techniques for synthesis problems in parametric Mar kov chains. Our techniques are applicable to arbitrarily many, possibly dependent parameters that may occur in various CPTs. This lifts the severe restrictions on parameters, e.g., by restricting the number of parametrized CPTs to one or two, or by avoiding parameter dependencies between several CPTs, in existing works for parametric Bayes networks (pBNs). We describe how our techniques can be used for various pBN synthesis problems studied in the literature such as computing sensitivity functions (and values), simple and difference parameter tuning, ratio parameter tuning, and minimal change tuning. Experiments on several benchmarks show that our prototypical tool built on top of the probabilistic model checker Storm can handle several hundreds of parameters.
Statistical models of real world data typically involve continuous probability distributions such as normal, Laplace, or exponential distributions. Such distributions are supported by many probabilistic modelling formalisms, including probabilistic d atabase systems. Yet, the traditional theoretical framework of probabilistic databases focusses entirely on finite probabilistic databases. Only recently, we set out to develop the mathematical theory of infinite probabilistic databases. The present paper is an exposition of two recent papers which are cornerstones of this theory. In (Grohe, Lindner; ICDT 2020) we propose a very general framework for probabilistic databases, possibly involving continuous probability distributions, and show that queries have a well-defined semantics in this framework. In (Grohe, Kaminski, Katoen, Lindner; PODS 2020) we extend the declarative probabilistic programming language Generative Datalog, proposed by (Barany et al.~2017) for discrete probability distributions, to continuous probability distributions and show that such programs yield generative models of continuous probabilistic databases.
We present a new, simple technique to reduce state space sizes in probabilistic model checking when the input model is defined in a programming formalism like the PRISM modeling language. Similar in spirit to traditional compiler optimizations that t ry to summarize instruction sequences into shorter ones, our approach aims at computing the summary behavior of adjacent locations in the programs control-flow graph, thereby obtaining a program with fewer control states. This reduction is immediately reflected in the programs operational semantics, enabling more efficient probabilistic model checking. A key insight is that in principle, each (combination of) program variable(s) with finite domain can play the role of the program counter that defines the flow structure. Unlike various reduction techniques, our approach is property-directed. In many cases, it suffices to compute the reduced program only once to analyze it for many different parameter configurations - a rather common workflow in probabilistic model checking. Experiments demonstrate that our simple technique yields a state-space reduction of about one order of magnitude on practically relevant benchmarks.
This paper presents an efficient procedure for multi-objective model checking of long-run average reward (aka: mean pay-off) and total reward objectives as well as their combination. We consider this for Markov automata, a compositional model that ca ptures both traditional Markov decision processes (MDPs) as well as a continuous-time variant thereof. The crux of our procedure is a generalization of Forejt et al.s approach for total rewards on MDPs to arbitrary combinations of long-run and total reward objectives on Markov automata. Experiments with a prototypical implementation on top of the Storm model checker show encouraging results for both model types and indicate a substantial improved performance over existing multi-objective long-run MDP model checking based on linear programming.
The termination behavior of probabilistic programs depends on the outcomes of random assignments. Almost sure termination (AST) is concerned with the question whether a program terminates with probability one on all possible inputs. Positive almost s ure termination (PAST) focuses on termination in a finite expected number of steps. This paper presents a fully automated approach to the termination analysis of probabilistic while-programs whose guards and expressions are polynomial expressions. As proving (positive) AST is undecidable in general, existing proof rules typically provide sufficient conditions. These conditions mostly involve constraints on supermartingales. We consider four proof rules from the literature and extend these with generalizations of existing proof rules for (P)AST. We automate the resulting set of proof rules by effectively computing asymptotic bounds on polynomials over the program variables. These bounds are used to decide the sufficient conditions - including the constraints on supermartingales - of a proof rule. Our software tool Amber can thus check AST, PAST, as well as their negations for a large class of polynomial probabilistic programs, while carrying out the termination reasoning fully with polynomial witnesses. Experimental results show the merits of our generalized proof rules and demonstrate that Amber can handle probabilistic programs that are out of reach for other state-of-the-art tools.
This article presents the complexity of reachability decision problems for parametric Markov decision processes (pMDPs), an extension to Markov decision processes (MDPs) where transitions probabilities are described by polynomials over a finite set o f parameters. In particular, we study the complexity of finding values for these parameters such that the induced MDP satisfies some maximal or minimal reachability probability constraints. We discuss different variants depending on the comparison operator in the constraints and the domain of the parameter values. We improve all known lower bounds for this problem, and notably provide ETR-completeness results for distinct variants of this problem.
The verification problem in MDPs asks whether, for any policy resolving the nondeterminism, the probability that something bad happens is bounded by some given threshold. This verification problem is often overly pessimistic, as the policies it consi ders may depend on the complete system state. This paper considers the verification problem for partially observable MDPs, in which the policies make their decisions based on (the history of) the observations emitted by the system. We present an abstraction-refinement framework extending previous instantiations of the Lovejoy-approach. Our experiments show that this framework significantly improves the scalability of the approach.
We study turn-based stochastic zero-sum games with lexicographic preferences over reachability and safety objectives. Stochastic games are standard models in control, verification, and synthesis of stochastic reactive systems that exhibit both random ness as well as angelic and demonic non-determinism. Lexicographic order allows to consider multiple objectives with a strict preference order over the satisfaction of the objectives. To the best of our knowledge, stochastic games with lexicographic objectives have not been studied before. We establish determinacy of such games and present strategy and computational complexity results. For strategy complexity, we show that lexicographically optimal strategies exist that are deterministic and memory is only required to remember the already satisfied and violated objectives. For a constant number of objectives, we show that the relevant decision problem is in NP $cap$ coNP, matching the current known bound for single objectives; and in general the decision problem is PSPACE-hard and can be solved in NEXPTIME $cap$ coNEXPTIME. We present an algorithm that computes the lexicographically optimal strategies via a reduction to computation of optimal strategies in a sequence of single-objectives games. We have implemented our algorithm and report experimental results on various case studies.
We present the probabilistic model checker Storm. Storm supports the analysis of discrete- and continuous-time variants of both Markov chains and Markov decision processes. Storm has three major distinguishing features. It supports multiple input lan guages for Markov models, including the JANI and PRISM modeling languages, dynamic fault trees, generalized stochastic Petri nets, and the probabilistic guarded command language. It has a modular set-up in which solvers and symbolic engines can easily be exchanged. Its Python API allows for rapid prototyping by encapsulating Storms fast and scalable algorithms. This paper reports on the main features of Storm and explains how to effectively use them. A description is provided of the main distinguishing functionalities of Storm. Finally, an empirical evaluation of different configurations of Storm on the QComp 2019 benchmark set is presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا