ﻻ يوجد ملخص باللغة العربية
This article presents the complexity of reachability decision problems for parametric Markov decision processes (pMDPs), an extension to Markov decision processes (MDPs) where transitions probabilities are described by polynomials over a finite set of parameters. In particular, we study the complexity of finding values for these parameters such that the induced MDP satisfies some maximal or minimal reachability probability constraints. We discuss different variants depending on the comparison operator in the constraints and the domain of the parameter values. We improve all known lower bounds for this problem, and notably provide ETR-completeness results for distinct variants of this problem.
This paper studies parametric Markov decision processes (pMDPs), an extension to Markov decision processes (MDPs) where transitions probabilities are described by polynomials over a finite set of parameters. Fixing values for all parameters yields MD
Parametric Interval Markov Chains (pIMCs) are a specification formalism that extend Markov Chains (MCs) and Interval Markov Chains (IMCs) by taking into account imprecision in the transition probability values: transitions in pIMCs are labeled with p
We consider synchronizing properties of Markov decision processes (MDP), viewed as generators of sequences of probability distributions over states. A probability distribution is p-synchronizing if the probability mass is at least p in some state, an
We consider Markov decision processes (MDP) as generators of sequences of probability distributions over states. A probability distribution is p-synchronizing if the probability mass is at least p in a single state, or in a given set of states. We co
We introduce synchronizing objectives for Markov decision processes (MDP). Intuitively, a synchronizing objective requires that eventually, at every step there is a state which concentrates almost all the probability mass. In particular, it implies t