ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic Games with Lexicographic Reachability-Safety Objectives

150   0   0.0 ( 0 )
 نشر من قبل Tobias Winkler
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study turn-based stochastic zero-sum games with lexicographic preferences over reachability and safety objectives. Stochastic games are standard models in control, verification, and synthesis of stochastic reactive systems that exhibit both randomness as well as angelic and demonic non-determinism. Lexicographic order allows to consider multiple objectives with a strict preference order over the satisfaction of the objectives. To the best of our knowledge, stochastic games with lexicographic objectives have not been studied before. We establish determinacy of such games and present strategy and computational complexity results. For strategy complexity, we show that lexicographically optimal strategies exist that are deterministic and memory is only required to remember the already satisfied and violated objectives. For a constant number of objectives, we show that the relevant decision problem is in NP $cap$ coNP, matching the current known bound for single objectives; and in general the decision problem is PSPACE-hard and can be solved in NEXPTIME $cap$ coNEXPTIME. We present an algorithm that computes the lexicographically optimal strategies via a reduction to computation of optimal strategies in a sequence of single-objectives games. We have implemented our algorithm and report experimental results on various case studies.



قيم البحث

اقرأ أيضاً

75 - Edon Kelmendi 2016
Two-player, turn-based, stochastic games with reachability conditions are considered, where the maximizer has no information (he is blind) and is restricted to deterministic strategies whereas the minimizer is perfectly informed. We ask the question of whether the game has maxmin 1, in other words we ask whether for all $epsilon>0$ there exists a deterministic strategy for the (blind) maximizer such that against all the strategies of the minimizer, it is possible to reach the set of final states with probability larger than $1-epsilon$. This problem is undecidable in general, but we define a class of games, called leaktight half-blind games where the problem becomes decidable. We also show that mixed strategies in general are stronger for both players and that optimal strategies for the minimizer might require infinite-memory.
109 - Loic Helouet 2019
We study games with reachability objectives under energy constraints. We first prove that under strict energy constraints (either only lower-bound constraint or interval constraint), those games are LOGSPACE-equivalent to energy games with the same e nergy constraints but without reachability objective (i.e., for infinite runs). We then consider two kinds of relaxations of the upper-bound constraints (while keeping the lower-bound constraint strict): in the first one, called weak upper bound, the upper bound is absorbing, in the sense that it allows receiving more energy when the upper bound is already reached, but the extra energy will not be stored; in the second one, we allow for temporary violations of the upper bound, imposing limits on the number or on the amount of violations. We prove that when considering weak upper bound, reachability objectives require memory, but can still be solved in polynomial-time for one-player arenas; we prove that they are in co-NP in the two-player setting. Allowing for bounded violations makes the problem PSPACE-complete for one-player arenas and EXPTIME-complete for two players.
We study stochastic games with energy-parity objectives, which combine quantitative rewards with a qualitative $omega$-regular condition: The maximizer aims to avoid running out of energy while simultaneously satisfying a parity condition. We show th at the corresponding almost-sure problem, i.e., checking whether there exists a maximizer strategy that achieves the energy-parity objective with probability $1$ when starting at a given energy level $k$, is decidable and in $NP cap coNP$. The same holds for checking if such a $k$ exists and if a given $k$ is minimal.
We study a class of games, in which the adversary (attacker) is to satisfy a complex mission specified in linear temporal logic, and the defender is to prevent the adversary from achieving its goal. A deceptive defender can allocate decoys, in additi on to defense actions, to create disinformation for the attacker. Thus, we focus on the problem of jointly synthesizing a decoy placement strategy and a deceptive defense strategy that maximally exploits the incomplete information the attacker about the decoy locations. We introduce a model of hypergames on graphs with temporal logic objectives to capture such adversarial interactions with asymmetric information. Using the hypergame model, we analyze the effectiveness of a given decoy placement, quantified by the set of deceptive winning states where the defender can prevent the attacker from satisfying the attack objective given its incomplete information about decoy locations. Then, we investigate how to place decoys to maximize the defenders deceptive winning region. Considering the large search space for all possible decoy allocation strategies, we incorporate the idea of compositional synthesis from formal methods and show that the objective function in the class of decoy allocation problem is monotone and non-decreasing. We derive the sufficient conditions under which the objective function for the decoy allocation problem is submodular, or supermodular, respectively. We show a sub-optimal allocation can be efficiently computed by iteratively composing the solutions of hypergames with a subset of decoys and the solution of a hypergame given a single decoy. We use a running example to illustrate the proposed method.
Stochastic games combine controllable and adversarial non-determinism with stochastic behavior and are a common tool in control, verification and synthesis of reactive systems facing uncertainty. Multi-objective stochastic games are natural in situat ions where several - possibly conflicting - performance criteria like time and energy consumption are relevant. Such conjunctive combinations are the most studied multi-objective setting in the literature. In this paper, we consider the dual disjunctive problem. More concretely, we study turn-based stochastic two-player games on graphs where the winning condition is to guarantee at least one reachability or safety objective from a given set of alternatives. We present a fine-grained overview of strategy and computational complexity of such emph{disjunctive queries} (DQs) and provide new lower and upper bounds for several variants of the problem, significantly extending previous works. We also propose a novel value iteration-style algorithm for approximating the set of Pareto optimal thresholds for a given DQ.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا