ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear topological photonic and phononic systems have recently aroused intense interests in exploring new phenomena that have no counterparts in electronic systems. The squeezed bosonic interaction in these systems is particularly interesting, bec ause it can modify the vacuum fluctuations of topological states, drive them into instabilities, and lead to topological parametric lasers. However, these phenomena remain experimentally elusive because of limited nonlinearities in most existing topological bosonic systems. Here, we experimentally realized topological parametric lasers based on nonlinear nanoelectromechanical Dirac-vortex cavities with strong squeezed interaction. Specifically, we parametrically drove the Dirac-vortex cavities to provide phase-sensitive amplification for topological phonons, and observed phonon lasing above the threshold. Additionally, we confirmed that the lasing frequency is robust against fabrication disorders and that the free spectral range defies the universal inverse scaling law with increased cavity size, which benefit the realization of large-area single-mode lasers. Our results represent an important advance in experimental investigations of topological physics with large bosonic nonlinearities and parametric gain.
Robust laser sources are a fundamental building block for contemporary information technologies. Originating from condensed-matter physics, the concept of topology has recently entered the realm of optics, offering fundamentally new design principles for lasers with enhanced robustness. In analogy to the well-known Majorana fermions in topological superconductors, Dirac-vortex states have recently been investigated in passive photonic systems and are now considered as a promising candidate for single-mode large-area lasers. Here, we experimentally realize the first Dirac-vortex topological lasers in InAs/InGaAs quantum-dot materials monolithically grown on a silicon substrate. We observe room-temperature continuous-wave single-mode linearly polarized vertical laser emission at a telecom wavelength. Most importantly, we confirm that the wavelength of the Dirac-vortex laser is topologically robust against variations in the cavity size, and its free spectral range defies the universal inverse scaling law with the cavity size. These lasers will play an important role in CMOS-compatible photonic and optoelectronic systems on a chip.
The textbook-accepted formulation of electromagnetic force was proposed by Lorentz in the 19th century, but its validity has been challenged due to incompatibility with the special relativity and momentum conservation. The Einstein-Laub formulation, which can reconcile those conflicts, was suggested as an alternative to the Lorentz formulation. However, intense debates on the exact force are still going on due to lack of experimental evidence. Here, we report the first experimental investigation of angular symmetry of optical force inside a solid dielectric, aiming to distinguish the two formulations. The experiments surprisingly show that the optical force exerted by a Gaussian beam has components with the angular mode number of both 2 and 0, which cannot be explained solely by the Lorentz or the Einstein-Laub formulation. Instead, we found a modified Helmholtz theory by combining the Lorentz force with additional electrostrictive force could explain our experimental results. Our results represent a fundamental leap forward in determining the correct force formulation, and will update the working principles of many applications involving electromagnetic forces.
150 - Jingwen Ma , Xiang Xi , Yuan Li 2020
Discrete degrees of freedom, such as spin and orbital, can provide intriguing strategies to manipulate electrons, photons, and phonons. With a spin degree of freedom, topological insulators have stimulated intense interests in condensed-matter physic s, optics, acoustics, and mechanics. However, orbital as another fundamental attribute in crystals has seldom been investigated in topological insulators. Here, we invent a new type of topological insulators with an auxiliary orbital degree of freedom on a nanomechanical platform. We experimentally realized nanomechanical topological insulators where the orbital can arbitrarily be manipulated by the crystal. Harnessing this unique feature, we demonstrated adiabatic transition between distinct topological edge states, which is a crucial functionality for complicated systems that involve distinct topological edge channels. Beyond the one-dimensional edge states, we further constructed zero-dimensional Dirac-vortex states. Our results have unveiled unprecedented strategies to manipulate topological phase transitions and to study topological phases of matter on an integrated platform.
379 - Jingwen Ma , Xiang Xi , 2019
Valley pseudospin, a new degree of freedom in photonic lattices, provides an intriguing way to manipulate photons and enhance the robustness of optical networks. Here we experimentally demonstrated topological waveguiding, refracting, resonating, and routing of valley-polarized photons in integrated circuits. Specifically, we show that at the domain wall between photonic crystals of different topological valley phases, there exists a topologically protected valley kink state that is backscattering-free at sharp bends and terminals. We further harnessed these valley kink states for constructing high-Q topological photonic crystal cavities with tortuously shaped cavity geometries. We also demonstrated a novel optical routing scheme at an intersection of multiple valley kink states, where light splits counterintuitively due to the valley pseudospin of photons. These results will not only lead to robust optical communication and signal processing, but also open the door for fundamental research of topological photonics in areas such as lasing, quantum photon-pair generation, and optomechanics.
161 - Zejie Yu , Xiang Xi , Jingwen Ma 2019
Waves that are perfectly confined in the continuous spectrum of radiating waves without interaction with them are known as bound states in the continuum (BICs). Despite recent discoveries of BICs in nanophotonics, full routing and control of BICs are yet to be explored. Here, we experimentally demonstrate BICs in a fundamentally new photonic architecture by patterning a low-refractive-index material on a high-refractive-index substrate, where dissipation to the substrate continuum is eliminated by engineering the geometric parameters. Pivotal BIC-based photonic components are demonstrated, including waveguides, microcavities, directional couplers, and modulators. Therefore, this work presents the critical step of photonic integrated circuits in the continuum, and enables the exploration of new single-crystal materials on an integrated photonic platform without the fabrication challenges of patterning the single-crystal materials. The demonstrated lithium niobate platform will facilitate development of functional photonic integrated circuits for optical communications, nonlinear optics at the single photon level as well as scalable photonic quantum information processors.
392 - Jingwen Ma , Xiang Xi , Zejie Yu 2016
Optical isolators are an important building block in photonic computation and communication. In traditional optics, isolators are realized with magneto-optical garnets. However, it remains challenging to incorporate such materials on an integrated pl atform because of the difficulty in material growth and bulky device footprint. Here, we propose an ultracompact integrated isolator by exploiting graphenes magneto-optical property on a silicon-on-insulator platform. The photonic nonreciprocity is achieved because the cyclotrons in graphene experiencing different optical spin exhibit different response to counterpropagating light. Taking advantage of cavity resonance effects, we have numerically optimized a device design, which shows excellent isolation performance with the extinction ratio over 45 dB and the insertion loss around 12 dB at a wavelength near 1.55 um. Featuring graphenes CMOS compatibility and substantially reduced device footprint, our proposal sheds light to monolithic integration of nonreciprocal photonic devices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا