ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanomechanical topological insulators with an auxiliary orbital degree of freedom

151   0   0.0 ( 0 )
 نشر من قبل Xiang Xi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Discrete degrees of freedom, such as spin and orbital, can provide intriguing strategies to manipulate electrons, photons, and phonons. With a spin degree of freedom, topological insulators have stimulated intense interests in condensed-matter physics, optics, acoustics, and mechanics. However, orbital as another fundamental attribute in crystals has seldom been investigated in topological insulators. Here, we invent a new type of topological insulators with an auxiliary orbital degree of freedom on a nanomechanical platform. We experimentally realized nanomechanical topological insulators where the orbital can arbitrarily be manipulated by the crystal. Harnessing this unique feature, we demonstrated adiabatic transition between distinct topological edge states, which is a crucial functionality for complicated systems that involve distinct topological edge channels. Beyond the one-dimensional edge states, we further constructed zero-dimensional Dirac-vortex states. Our results have unveiled unprecedented strategies to manipulate topological phase transitions and to study topological phases of matter on an integrated platform.

قيم البحث

اقرأ أيضاً

We theoretically propose a gigantic orbital Edelstein effect in topological insulators and interpret the results in terms of topological surface currents. We numerically calculate the orbital Edelstein effect for a model of a three-dimensional Chern insulator as an example. Furthermore, we calculate the orbital Edelstein effect as a surface quantity using a surface Hamiltonian of a topological insulator, and numerically show that it well describes the results by direct numerical calculation. We find that the orbital Edelstein effect depends on the local crystal structure of the surface, which shows that the orbital Edelstein effect cannot be defined as a bulk quantity. We propose that Chern insulators and Z_2 topological insulators can be a platform with a large orbital Edelstein effect because current flows only along the surface. We also propose candidate topological insulators for this effect. As a result, the orbital magnetization as a response to the current is much larger in topological insulators than that in metals by many orders of magnitude.
We demonstrate, both theoretically and experimentally, the concept of non-linear second-order topological insulators, a class of bulk insulators with quantized Wannier centers and a bulk polarization directly controlled by the level of non-linearity. We show that one-dimensional edge states and zero-dimensional corner states can be induced in a trivial crystal insulator made of evanescently coupled resonators with linear and nonlinear coupling coefficients, simply by tuning the excitation intensity. This allows global external control over topological phase transitions and switching to a phase with non-zero bulk polarization, without requiring any structural or geometrical changes. We further show how these non-linear effects enable dynamic tuning of the spectral properties and localization of the topological edge and corner states. Such self-induced second-order topological insulators, which can be found and implemented in a wide variety of physical platforms ranging from electronics to microwaves, acoustics, and optics, hold exciting promises for reconfigurable topological energy confinement, power harvesting, data storage, and spatial management of high-intensity fields.
Robustness against disorder and defects is a pivotal advantage of topological systems, manifested by absence of electronic backscattering in the quantum Hall and spin-Hall effects, and unidirectional waveguiding in their classical analogs. Two-dimens ional (2D) topological insulators, in particular, provide unprecedented opportunities in a variety of fields due to their compact planar geometries compatible with the fabrication technologies used in modern electronics and photonics. Among all 2D topological phases, Chern insulators are to date the most reliable designs due to the genuine backscattering immunity of their non-reciprocal edge modes, brought via time-reversal symmetry breaking. Yet, such resistance to fabrication tolerances is limited to fluctuations of the same order of magnitude as their band gap, limiting their resilience to small perturbations only. Here, we tackle this vexing problem by introducing the concept of anomalous non-reciprocal topological networks, that survive disorder levels with strengths arbitrarily larger than their bandgap. We explore the general conditions to obtain such unusual effect in systems made of unitary three-port scattering matrices connected by phase links, and establish the superior robustness of the anomalous edge modes over the Chern ones to phase link disorder of arbitrarily large values. We confirm experimentally the exceptional resilience of the anomalous phase, and demonstrate its operation by building an ideal anomalous topological circulator despite its arbitrary shape and large number of ports. Our results pave the way to efficient, arbitrary planar energy transport on 2D substrates for wave devices with full protection against large fabrication flaws or imperfections.
Within a relativistic quantum formalism we examine the role of second-order corrections caused by the application of magnetic fields in two-dimensional topological and Chern insulators. This allows to reach analytical expressions for the change of th e Berry curvature, orbital magnetic moment, density of states and energy determining their canonical grand potential and transport properties. The present corrections, which become relevant at relatively low fields due to the small gap characterizing these systems, unveil a zero-field diamagnetic susceptibility which can be tuned by the external magnetic field.
The Su-Schrieffer-Heeger (SSH) model on a two-dimensional square lattice has been considered as a significant platform for studying topological multipole insulators. However, due to the highly-degenerate bulk energy bands protected by $ C_{4v} $ and chiral symmetry, the discussion of the zero-energy topological corner states and the corresponding physical realization have been rarely presented. In this work, by tuning the hopping terms to break $ C_{4v} $ symmetry down to $ C_{2v} $ symmetry but with the topological phase invariant, we show that the degeneracies can be removed and a complete band gap can be opened, which provides robust protection for the spectrally isolated zero-energy corner states. Meanwhile, we propose a rigorous acoustic crystalline insulator and therefore these states can be observed directly. Our work reveals the topological properties of the robust zero-energy states, and provides a new way to explore novel topological phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا