ترغب بنشر مسار تعليمي؟ اضغط هنا

We present renormalization constants of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations. This setup is being used by the chiQCD collaboration in calculations of physical quantities such as strangeness in the nucleon and the strange and charm quark masses. The scale independent renormalization constant for the axial vector current is computed using the Ward Identity. The renormalization constants for scalar, pseudoscalar and vector current are calculated in the RI-MOM scheme. Results in the MS-bar scheme are also given. The step scaling function of quark masses in the RI-MOM scheme is computed as well. The analysis uses, in total, six different ensembles of three sea quarks each on two lattices with sizes 24^3x64 and 32^3x64 at spacings a=(1.73 GeV)^{-1} and (2.28 GeV)^{-1}, respectively.
The calculation of the nucleon strangeness form factors from N_f=2+1 clover fermion lattice QCD is presented. Disconnected insertions are evaluated using the Z(4) stochastic method, along with unbiased subtractions from the hopping parameter expansio n. We find that increasing the number of nucleon sources for each configuration improves the signal significantly. We obtain G_M^s(0) = -0.017(25)(07), which is consistent with experimental values, and has an order of magnitude smaller error. Preliminary results for the strangeness contribution to the second moment of the parton distribution function are also presented.
We study the strangeness electromagnetic form factors of the nucleon from the N_f=2+1 clover fermion lattice QCD calculation. The disconnected insertions are evaluated using the Z(4) stochastic method, along with unbiased subtractions from the hoppin g parameter expansion. In addition to increasing the number of Z(4) noises, we find that increasing the number of nucleon sources for each configuration improves the signal significantly. We obtain G_M^s(0) = -0.017(25)(07), where the first error is statistical, and the second is the uncertainties in Q^2 and chiral extrapolations. This is consistent with experimental values, and has an order of magnitude smaller error. We also study the strangeness second moment of the partion distribution function of the nucleon, <x^2>_{s-bar{s}}.
We present the N_f=2+1 clover fermion lattice QCD calculation of the nucleon strangeness form factors. We evaluate disconnected insertions using the Z(4) stochastic method, along with unbiased subtractions from the hopping parameter expansion. We fin d that increasing the number of nucleon sources for each configuration improves the signal significantly. We obtain G_M^s(0) = -0.017(25)(07), where the first error is statistical, and the second is the uncertainties in Q^2 and chiral extrapolations. This is consistent with experimental values, and has an order of magnitude smaller error.
We study the strangeness contribution to nucleon matrix elements using Nf=2+1 dynamical clover fermion configurations generated by the CP-PACS/JLQCD collaboration. In order to evaluate the disconnected insertion (DI), we use the Z(4) stochastic metho d, along with unbiased subtraction from the hopping parameter expansion which reduces the off-diagonal noises in the stochastic method. Furthermore, we find that using many nucleon sources for each configuration is effective in improving the signal. Our results for the quark contribution to the first moment <x>_q in the DI, and the strangeness magnetic moment show that the statistical errors are under control with these techniques. We also study the gluonic contribution to the nucleon using the overlap operator to construct the gauge field tensor, F_{mu,nu}. The application to the calculation of first moment, <x>_G, gives a good signal in quenched lattice QCD.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا