ترغب بنشر مسار تعليمي؟ اضغط هنا

Strangeness and glue in the nucleon from lattice QCD

214   0   0.0 ( 0 )
 نشر من قبل Takumi Doi
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the strangeness contribution to nucleon matrix elements using Nf=2+1 dynamical clover fermion configurations generated by the CP-PACS/JLQCD collaboration. In order to evaluate the disconnected insertion (DI), we use the Z(4) stochastic method, along with unbiased subtraction from the hopping parameter expansion which reduces the off-diagonal noises in the stochastic method. Furthermore, we find that using many nucleon sources for each configuration is effective in improving the signal. Our results for the quark contribution to the first moment <x>_q in the DI, and the strangeness magnetic moment show that the statistical errors are under control with these techniques. We also study the gluonic contribution to the nucleon using the overlap operator to construct the gauge field tensor, F_{mu,nu}. The application to the calculation of first moment, <x>_G, gives a good signal in quenched lattice QCD.



قيم البحث

اقرأ أيضاً

By introducing an additional operator into the action and using the Feynman-Hellmann theorem we describe a method to determine both the quark line connected and disconnected terms of matrix elements. As an illustration of the method we calculate the gluon contribution (chromo-electric and chromo-magnetic components) to the nucleon mass.
We study the strangeness electromagnetic form factors of the nucleon from the N_f=2+1 clover fermion lattice QCD calculation. The disconnected insertions are evaluated using the Z(4) stochastic method, along with unbiased subtractions from the hoppin g parameter expansion. In addition to increasing the number of Z(4) noises, we find that increasing the number of nucleon sources for each configuration improves the signal significantly. We obtain G_M^s(0) = -0.017(25)(07), where the first error is statistical, and the second is the uncertainties in Q^2 and chiral extrapolations. This is consistent with experimental values, and has an order of magnitude smaller error. We also study the strangeness second moment of the partion distribution function of the nucleon, <x^2>_{s-bar{s}}.
130 - Y. Ikeda 2010
We study the KN interactions in the I(J^{pi})=0(1/2^-) and 1(1/2^-) channels and associated exotic state Theta^+ from 2+1 flavor full lattice QCD simulation for relatively heavy quark mass corresponding to m_{pi}=871 MeV. The s-wave KN potentials are obtained from the Bethe-Salpeter wave function by using the method recently developed by HAL QCD (Hadrons to Atomic nuclei from Lattice QCD) Collaboration. Potentials in both channels reveal short range repulsions: Strength of the repulsion is stronger in the I=1 potential, which is consistent with the prediction of the Tomozawa-Weinberg term. The I=0 potential is found to have attractive well at mid range. From these potentials, the $KN$ scattering phase shifts are calculated and compared with the experimental data.
110 - H. Nemura , N. Ishii , S. Aoki 2007
We calculate $pXi^0$ potentials from the equal-time Bethe-Salpeter amplitude measured in the quenched QCD simulation with the spatial lattice volume, (4.4 fm)$^3$. The standard Wilson gauge action with the gauge coupling $beta=5.7$ on $32^4$ lattice together with the standard Wilson quark action are used. The hopping parameter $kappa_{ud}=0.1678$ is chosen for $u$ and $d$ quarks, which corresponds to $m_{pi}simeq 0.37$ GeV. The physical strange quark mass is used by taking the parameter $kappa_s=0.1643$ which is deduced from the physical $K$ meson mass. The lattice spacing $a=0.1420$ fm is determined by the physical $rho$ meson mass. We find that the $pXi^0$ potential has strong spin dependence. Strong repulsive core is found in $^1S_0$ channel while the effective central potential in the $^3S_1$ channel has relatively weak repulsive core. The potentials also have weak attractive parts in the medium to long distance region (0.6 fm $lsim r lsim 1.2$ fm) in both of the $^1S_0$ and $^3S_1$ channels.
We present a new analysis method that allows one to understand and model excited state contributions in observables that are dominated by a pion pole. We apply this method to extract axial and (induced) pseudoscalar nucleon isovector form factors, wh ich satisfy the constraints due to the partial conservation of the axial current up to expected discretization effects. Effective field theory predicts that the leading contribution to the (induced) pseudoscalar form factor originates from an exchange of a virtual pion, and thus exhibits pion pole dominance. Using our new method, we can recover this behavior directly from lattice data. The numerical analysis is based on a large set of ensembles generated by the CLS effort, including physical pion masses, large volumes (with up to $96^3 times 192$ sites and $L m_pi = 6.4$), and lattice spacings down to $0.039 , text{fm}$, which allows us to take all the relevant limits. We find that some observables are much more sensitive to the choice of parametrization of the form factors than others. On the one hand, the $z$-expansion leads to significantly smaller values for the axial dipole mass than the dipole ansatz ($M_A^{text{$z$-exp}}=1.02(10) , text{GeV}$ versus $M_A^{text{dipole}} = 1.31(8) , text{GeV}$). On the other hand, we find that the result for the induced pseudoscalar coupling at the muon capture point is almost independent of the choice of parametrization ($g_P^{star text{$z$-exp}} = 8.68(45)$ and $g_P^{star text{dipole}} = 8.30(24)$), and is in good agreement with both, chiral perturbation theory predictions and experimental measurement via ordinary muon capture. We also determine the axial coupling constant $g_A$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا