ترغب بنشر مسار تعليمي؟ اضغط هنا

We use a Monte Carlo code to calculate the geodesic orbits of test particles around Kerr black holes, generating a distribution function of both bound and unbound populations of dark matter particles. From this distribution function, we calculate ann ihilation rates and observable gamma-ray spectra for a few simple dark matter models. The features of these spectra are sensitive to the black hole spin, observer inclination, and detailed properties of the dark matter annihilation cross section and density profile. Confirming earlier analytic work, we find that for rapidly spinning black holes, the collisional Penrose process can reach efficiencies exceeding $600%$, leading to a high-energy tail in the annihilation spectrum. The high particle density and large proper volume of the region immediately surrounding the horizon ensures that the observed flux from these extreme events is non-negligible.
We present a new upper limit on the energy that may be extracted from a Kerr black hole by means of particle collisions in the ergosphere (i.e., the collisional Penrose process). Earlier work on this subject has focused largely on particles with crit ical values of angular momentum falling into an extremal Kerr black hole from infinity and colliding just outside the horizon. While these collisions are able to reach arbitrarily high center-of-mass energies, it is very difficult for the reaction products to escape back to infinity, effectively limiting the peak efficiency of such a process to roughly $130%$. When we allow one of the initial particles to have impact parameter $b > 2M$, and thus not get captured by the horizon, it is able to collide along outgoing trajectories, greatly increasing the chance that the products can escape. For equal-mass particles annihilating to photons, we find a greatly increased peak energy of $E_{rm out} approx 6times E_{rm in}$. For Compton scattering, the efficiency can go even higher, with $E_{rm out} approx 14times E_{rm in}$, and for repeated scattering events, photons can both be produced {it and} escape to infinity with Planck-scale energies.
We present here an overview of recent work in the subject of astrophysical manifestations of super-massive black hole (SMBH) mergers. This is a field that has been traditionally driven by theoretical work, but in recent years has also generated a gre at deal of interest and excitement in the observational astronomy community. In particular, the electromagnetic (EM) counterparts to SMBH mergers provide the means to detect and characterize these highly energetic events at cosmological distances, even in the absence of a space-based gravitational-wave observatory. In addition to providing a mechanism for observing SMBH mergers, EM counterparts also give important information about the environments in which these remarkable events take place, thus teaching us about the mechanisms through which galaxies form and evolve symbiotically with their central black holes.
A supermassive black hole ejected from the center of a galaxy by gravitational wave recoil carries a retinue of bound stars - a hypercompact stellar system (HCSS). The numbers and properties of HCSSs contain information about the merger histories of galaxies, the late evolution of binary black holes, and the distribution of gravitational-wave kicks. We relate the structural properties of HCSSs to the properties of their host galaxies, in two regimes: collisional, i.e. short nuclear relaxation times; and collisionless, i.e. long nuclear relaxtion times. HCSSs are expected to be similar in size and luminosity to globular clustersbut in extreme cases their stellar mass can approach that of UCDs. However they differ from all other classes of compact stellar system in having very high internal velocities. We show that the kick velocity is encoded in the velocity dispersion of the bound stars. Given a large enough sample of HCSSs, the distribution of gravitational-wave kicks can therefore be empirically determined. We combine a hierarchical merger algorithm with stellar population models to compute the rate of production of HCSSs over time and the probability of observing HCSSs in the local universe as a function of their apparent magnitude, color, size and velocity dispersion, under two assumptions about the star formation history prior to the kick. We predict that roughly 100 should be detectable within 2 Mpc of the center of the Virgo cluster and that many of these should be bright enough that their high internal velocity dispersions could be measured with reasonable exposure times.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا