ترغب بنشر مسار تعليمي؟ اضغط هنا

Astrophysics of Super-massive Black Hole Mergers

117   0   0.0 ( 0 )
 نشر من قبل Jeremy D. Schnittman
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present here an overview of recent work in the subject of astrophysical manifestations of super-massive black hole (SMBH) mergers. This is a field that has been traditionally driven by theoretical work, but in recent years has also generated a great deal of interest and excitement in the observational astronomy community. In particular, the electromagnetic (EM) counterparts to SMBH mergers provide the means to detect and characterize these highly energetic events at cosmological distances, even in the absence of a space-based gravitational-wave observatory. In addition to providing a mechanism for observing SMBH mergers, EM counterparts also give important information about the environments in which these remarkable events take place, thus teaching us about the mechanisms through which galaxies form and evolve symbiotically with their central black holes.



قيم البحث

اقرأ أيضاً

139 - Maria Okounkova 2020
Recently, it has been shown that with the inclusion of overtones, the post-merger gravitational waveform at infinity of a binary black hole system is well-modelled using pure linear theory. However, given that a binary black hole merger is expected t o be highly non-linear, where do these non-linearities, which do not make it out to infinity, go? We visualize quantities measuring non-linearity in the strong-field region of a numerical relativity binary black hole merger in order to begin to answer this question.
Observations of gravitational waves and their electromagnetic counterparts may soon uncover the existence of coalescing compact binary systems formed by a stellar-mass black hole and a neutron star. These mergers result in a remnant black hole, possi bly surrounded by an accretion disk. The mass and spin of the remnant black hole depend on the properties of the coalescing binary. We construct a map from the binary components to the remnant black hole using a sample of numerical-relativity simulations of different mass ratios $q$, (anti-)aligned dimensionless spins of the black hole $a_{rm BH}$, and several neutron star equations of state. Given the binary total mass, the mass and spin of the remnant black hole can therefore be determined from the three parameters $(q,a_{rm BH},Lambda)$, where $Lambda$ is the tidal deformability of the neutron star. Our models also incorporate the binary black hole and test-mass limit cases and we discuss a simple extension for generic black hole spins. We combine the remnant characterization with recent population synthesis simulations for various metallicities of the progenitor stars that generated the binary system. We predict that black-hole-neutron-star mergers produce a population of remnant black holes with masses distributed around $7M_odot$ and $9M_odot$. For isotropic spin distributions, nonmassive accretion disks are favoured: no bright electromagnetic counterparts are expected in such mergers.
We investigate the precision with which the parameters describing the characteristics and location of nonspinning black hole binaries can be measured with the Laser Interferometer Space Antenna (LISA). By using complete waveforms including the inspir al, merger and ringdown portions of the signals, we find that LISA will have far greater precision than previous estimates for nonspinning mergers that ignored the merger and ringdown. Our analysis covers nonspinning waveforms with moderate mass ratios, q >= 1/10, and total masses 10^5 < M/M_{Sun} < 10^7. We compare the parameter uncertainties using the Fisher matrix formalism, and establish the significance of mass asymmetry and higher-order content to the predicted parameter uncertainties resulting from inclusion of the merger. In real-time observations, the later parts of the signal lead to significant improvements in sky-position precision in the last hours and even the final minutes of observation. For comparable mass systems with total mass M/M_{Sun} = ~10^6, we find that the increased precision resulting from including the merger is comparable to the increase in signal-to-noise ratio. For the most precise systems under investigation, half can be localized to within O(10 arcmin), and 10% can be localized to within O(1 arcmin).
Each of the potential signals from a black hole-neutron star merger should contain an imprint of the neutron star equation of state: gravitational waves via its effect on tidal disruption, the kilonova via its effect on the ejecta, and the gamma ray burst via its effect on the remnant disk. These effects have been studied by numerical simulations and quantified by semi-analytic formulae. However, most of the simulations on which these formulae are based use equations of state without finite temperature and composition-dependent nuclear physics. In this paper, we simulate black hole-neutron star mergers varying both the neutron star mass and the equation of state, using three finite-temperature nuclear models of varying stiffness. Our simulations largely vindicate formulae for ejecta properties but do not find the expected dependence of disk mass on neutron star compaction. We track the early evolution of the accretion disk, largely driven by shocking and fallback inflow, and do find notable equation of state effects on the structure of this early-time, neutrino-bright disk.
Testing general relativity in the non-linear, dynamical, strong-field regime of gravity is one of the major goals of gravitational wave astrophysics. Performing precision tests of general relativity (GR) requires numerical inspiral, merger, and ringd own waveforms for binary black hole (BBH) systems in theories beyond GR. Currently, GR and scalar-tensor gravity are the only theories amenable to numerical simulations. In this article, we present a well-posed perturbation scheme for numerically integrating beyond-GR theories that have a continuous limit to GR. We demonstrate this scheme by simulating BBH mergers in dynamical Chern-Simons gravity (dCS), to linear order in the perturbation parameter. We present mode waveforms and energy fluxes of the dCS pseudoscalar field from our numerical simulations. We find good agreement with analytic predictions at early times, including the absence of pseudoscalar dipole radiation. We discover new phenomenology only accessible through numerics: a burst of dipole radiation during merger. We also quantify the self-consistency of the perturbation scheme. Finally, we estimate bounds that GR-consistent LIGO detections could place on the new dCS length scale, approximately $ell lesssim mathcal{O}(10)~mathrm{km}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا