ترغب بنشر مسار تعليمي؟ اضغط هنا

Regular perturbation is applied to space-division multiplexing (SDM) on optical fibers and motivates a correlated rotation-and-additive noise (CRAN) model. For S spatial modes, or 2S complex-alphabet channels, the model has 4S(S+1) hidden independent real Gauss-Markov processes, of which 2S model phase noise, 2S(2S-1) model spatial mode rotation, and 4S model additive noise. Achievable information rates of multi-carrier communication are computed by using particle filters. For S=2 spatial modes with strong coupling and a 1000 km link, joint processing of the spatial modes gains 0.5 bits/s/Hz/channel in rate and 1.4 dB in power with respect to separate processing of 2S complex-alphabet channels without considering CRAN.
Potential energy surfaces of the hydrogen molecular ion H$_2^+$ in the Born-Oppenheimer approximation are computed by means of the Riccati-Pade method (RPM). The convergence properties of the method are analyzed for different states. The equilibrium internuclear distance, as well as the corresponding electronic plus nuclear energy, and the associated separation constants, are computed to 40 digits of accuracy for several bound states. For the ground state the same parameters are computed with more than 100 digits of accuracy. Additional benchmark values of the electronic energy at different internuclear distances are given for several additional states. The software implementation of the RPM is given under a free software license. The results obtained in the present work are the most accurate available so far, and further additional benchmarks are made available through the software provided.
The success of deep learning sparked interest in whether the brain learns by using similar techniques for assigning credit to each synaptic weight for its contribution to the network output. However, the majority of current attempts at biologically-p lausible learning methods are either non-local in time, require highly specific connectivity motives, or have no clear link to any known mathematical optimization method. Here, we introduce Deep Feedback Control (DFC), a new learning method that uses a feedback controller to drive a deep neural network to match a desired output target and whose control signal can be used for credit assignment. The resulting learning rule is fully local in space and time and approximates Gauss-Newton optimization for a wide range of feedback connectivity patterns. To further underline its biological plausibility, we relate DFC to a multi-compartment model of cortical pyramidal neurons with a local voltage-dependent synaptic plasticity rule, consistent with recent theories of dendritic processing. By combining dynamical system theory with mathematical optimization theory, we provide a strong theoretical foundation for DFC that we corroborate with detailed results on toy experiments and standard computer-vision benchmarks.
Regular perturbation is applied to the Manakov equation and motivates a generalized correlated phase-and-additive noise model for wavelength-division multiplexing over dual-polarization optical fiber channels. The model includes three hidden Gauss-Ma rkov processes: phase noise, polarization rotation, and additive noise. Particle filtering is used to compute lower bounds on the capacity of multi-carrier communication with frequency-dependent powers and delays. A gain of 0.17 bits/s/Hz/pol in spectral efficiency or 0.8 dB in power efficiency is achieved with respect to existing models at their peak data rate. Frequency-dependent delays also increase the spectral efficiency of single-polarization channels.
We present the analysis of X-ray observations of the black hole binary 4U~1630$-$47 using relativistic reflection spectroscopy. We use archival data from the RXTE, Swift, and NuSTAR observatories, taken during different outbursts of the source betwee n $1998$ and $2015$. Our modeling includes two relatively new advances in modern reflection codes: high-density disks, and returning thermal disk radiation. Accretion disks around stellar-mass black holes are expected to have densities well above the standard value assumed in traditional reflection models (i.e., $n_{rm e}sim10^{15}~{rm cm^{-3}}$). New high-density reflection models have important implications in the determination of disk truncation (i.e., the disk inner radius). This is because one must retain self-consistency in the irradiating flux and corresponding disk ionization state, which is a function of disk density and system geometry. We find the disk density is $n_{rm e}ge10^{20}~{rm cm^{-3}}$ across all spectral states. This density, combined with our constraints on the ionization state of the material, implies an irradiating flux impinging on the disk that is consistent with the expected theoretical estimates. Returning thermal disk radiation -- the fraction of disk photons which bend back to the disk producing additional reflection components -- is expected predominantly in the soft state. We show that returning radiation models indeed provide a better fit to the soft state data, reinforcing previous results which show that in the soft state the irradiating continuum may be blackbody emission from the disk itself.
Spatially and temporally explicit canopy water content (CWC) data are important for monitoring vegetation status, and constitute essential information for studying ecosystem-climate interactions. Despite many efforts there is currently no operational CWC product available to users. In the context of the Satellite Application Facility for Land Surface Analysis (LSA-SAF), we have developed an algorithm to produce a global dataset of CWC based on data from the Advanced Very High Resolution Radiometer (AVHRR) sensor on board Meteorological Operational (MetOp) satellites forming the EUMETSAT Polar System (EPS). CWC reflects the water conditions at the leaf level and information related to canopy structure. An accuracy assessment of the EPS/AVHRR CWC indicated a close agreement with multi-temporal ground data from SMAPVEX16 in Canada and Dahra in Senegal. The present study further evaluates the consistency of the LSA-SAF product with respect to the Simplified Level 2 Product Prototype Processor (SL2P) product, and demonstrates its applicability at different spatio-temporal resolutions using optical data from MSI/Sentinel-2 and MODIS/Terra and Aqua. We conclude that the EPS/AVHRR CWC product is a promising tool for monitoring vegetation water status at regional and global scales.
This paper presents the algorithm developed in LSA-SAF (Satellite Application Facility for Land Surface Analysis) for the derivation of global vegetation parameters from the AVHRR (Advanced Very High-Resolution Radiometer) sensor onboard MetOp (Meteo rological-Operational) satellites forming the EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Polar System (EPS). The suite of LSA-SAF EPS vegetation products includes the leaf area index (LAI), the fractional vegetation cover (FVC), and the fraction of absorbed photosynthetically active radiation (FAPAR). LAI, FAPAR, and FVC characterize the structure and the functioning of vegetation and are key parameters for a wide range of land-biosphere applications. The algorithm is based on a hybrid approach that blends the generalization capabilities offered by physical radiative transfer models with the accuracy and computational efficiency of machine learning methods. One major feature is the implementation of multi-output retrieval methods able to jointly and more consistently estimate all the biophysical parameters at the same time. We propose a multi-output Gaussian process regression (GPRmulti), which outperforms other considered methods over PROSAIL (coupling of PROSPECT and SAIL (Scattering by Arbitrary Inclined Leaves) radiative transfer models) EPS simulations. The global EPS products include uncertainty estimates taking into account the uncertainty captured by the retrieval method and input error propagation. The consistent generation and distribution of the EPS vegetation products will constitute a valuable tool for monitoring of earth surface dynamic processes.
Leaf area index (LAI) is a key biophysical parameter used to determine foliage cover and crop growth in environmental studies. Smartphones are nowadays ubiquitous sensor devices with high computational power, moderate cost, and high-quality sensors. A smartphone app, called PocketLAI, was recently presented and tested for acquiring ground LAI estimates. In this letter, we explore the use of state-of-the-art nonlinear Gaussian process regression (GPR) to derive spatially explicit LAI estimates over rice using ground data from PocketLAI and Landsat 8 imagery. GPR has gained popularity in recent years because of their solid Bayesian foundations that offers not only high accuracy but also confidence intervals for the retrievals. We show the first LAI maps obtained with ground data from a smartphone combined with advanced machine learning. This work compares LAI predictions and confidence intervals of the retrievals obtained with PocketLAI to those obtained with classical instruments, such as digital hemispheric photography (DHP) and LI-COR LAI-2000. This letter shows that all three instruments got comparable result but the PocketLAI is far cheaper. The proposed methodology hence opens a wide range of possible applications at moderate cost.
We describe the methodology applied for the retrieval of global LAI, FAPAR and FVC from Advanced Very High Resolution Radiometer (AVHRR) onboard the Meteorological-Operational (MetOp) polar orbiting satellites also known as EUMETSAT Polar System (EPS ). A novel approach has been developed for the joint retrieval of three parameters (LAI, FVC, and FAPAR) instead of training one model per parameter. The method relies on multi-output Gaussian Processes Regression (GPR) trained over PROSAIL EPS simulations. A sensitivity analysis is performed to assess several sources of uncertainties in retrievals and maximize the positive impact of modeling the noise in training simulations. We describe the main features of the operational processing chain along with the current status of the global EPS vegetation products, including details about its overall quality and preliminary assessment of the products based on intercomparison with equivalent (MODIS, PROBA-V) satellite vegetation products.
We investigate theoretically the quantum-coherence properties of the cathodoluminescence (CL) emission produced by a temporally modulated electron beam. Specifically, we consider the quantum-optical correlations of CL from electrons that are previous ly shaped by a laser field. The main prediction here is the presence of phase correlations between the emitted CL field and the electron-modulating laser, even though the emission intensity and spectral profile are independent of the electron state. In addition, the coherence of the CL field extends to harmonics of the laser frequency. Since electron beams can be focused to below one Angstrom, their ability to transfer optical coherence could enable ultra precise excitation, manipulation, and spectroscopy of nanoscale quantum systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا