ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of global vegetation products from EUMETSAT AVHRR/METOP satellites

48   0   0.0 ( 0 )
 نشر من قبل Gustau Camps-Valls
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the methodology applied for the retrieval of global LAI, FAPAR and FVC from Advanced Very High Resolution Radiometer (AVHRR) onboard the Meteorological-Operational (MetOp) polar orbiting satellites also known as EUMETSAT Polar System (EPS). A novel approach has been developed for the joint retrieval of three parameters (LAI, FVC, and FAPAR) instead of training one model per parameter. The method relies on multi-output Gaussian Processes Regression (GPR) trained over PROSAIL EPS simulations. A sensitivity analysis is performed to assess several sources of uncertainties in retrievals and maximize the positive impact of modeling the noise in training simulations. We describe the main features of the operational processing chain along with the current status of the global EPS vegetation products, including details about its overall quality and preliminary assessment of the products based on intercomparison with equivalent (MODIS, PROBA-V) satellite vegetation products.



قيم البحث

اقرأ أيضاً

This paper presents the algorithm developed in LSA-SAF (Satellite Application Facility for Land Surface Analysis) for the derivation of global vegetation parameters from the AVHRR (Advanced Very High-Resolution Radiometer) sensor onboard MetOp (Meteo rological-Operational) satellites forming the EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Polar System (EPS). The suite of LSA-SAF EPS vegetation products includes the leaf area index (LAI), the fractional vegetation cover (FVC), and the fraction of absorbed photosynthetically active radiation (FAPAR). LAI, FAPAR, and FVC characterize the structure and the functioning of vegetation and are key parameters for a wide range of land-biosphere applications. The algorithm is based on a hybrid approach that blends the generalization capabilities offered by physical radiative transfer models with the accuracy and computational efficiency of machine learning methods. One major feature is the implementation of multi-output retrieval methods able to jointly and more consistently estimate all the biophysical parameters at the same time. We propose a multi-output Gaussian process regression (GPRmulti), which outperforms other considered methods over PROSAIL (coupling of PROSPECT and SAIL (Scattering by Arbitrary Inclined Leaves) radiative transfer models) EPS simulations. The global EPS products include uncertainty estimates taking into account the uncertainty captured by the retrieval method and input error propagation. The consistent generation and distribution of the EPS vegetation products will constitute a valuable tool for monitoring of earth surface dynamic processes.
Spatially and temporally explicit canopy water content (CWC) data are important for monitoring vegetation status, and constitute essential information for studying ecosystem-climate interactions. Despite many efforts there is currently no operational CWC product available to users. In the context of the Satellite Application Facility for Land Surface Analysis (LSA-SAF), we have developed an algorithm to produce a global dataset of CWC based on data from the Advanced Very High Resolution Radiometer (AVHRR) sensor on board Meteorological Operational (MetOp) satellites forming the EUMETSAT Polar System (EPS). CWC reflects the water conditions at the leaf level and information related to canopy structure. An accuracy assessment of the EPS/AVHRR CWC indicated a close agreement with multi-temporal ground data from SMAPVEX16 in Canada and Dahra in Senegal. The present study further evaluates the consistency of the LSA-SAF product with respect to the Simplified Level 2 Product Prototype Processor (SL2P) product, and demonstrates its applicability at different spatio-temporal resolutions using optical data from MSI/Sentinel-2 and MODIS/Terra and Aqua. We conclude that the EPS/AVHRR CWC product is a promising tool for monitoring vegetation water status at regional and global scales.
Vegetation is the natural linkage connecting soil, atmosphere and water. It can represent the change of land cover to a certain extent and serve as an indicator for global change research. Methods for measuring coverage can be divided into two types: surface measurement and remote sensing. Because vegetation cover has significant spatial and temporal differentiation characteristics, remote sensing has become an important technical means to estimate vegetation coverage. This paper firstly uses U-net to perform remote sensing image semantic segmentation training, then uses the result of semantic segmentation, and then uses the integral progressive method to calculate the forestland change rate, and finally realizes automated valuation of woodland change rate.
The application of deep learning to pathology assumes the existence of digital whole slide images of pathology slides. However, slide digitization is bottlenecked by the high cost of precise motor stages in slide scanners that are needed for position information used for slide stitching. We propose GloFlow, a two-stage method for creating a whole slide image using optical flow-based image registration with global alignment using a computationally tractable graph-pruning approach. In the first stage, we train an optical flow predictor to predict pairwise translations between successive video frames to approximate a stitch. In the second stage, this approximate stitch is used to create a neighborhood graph to produce a corrected stitch. On a simulated dataset of video scans of WSIs, we find that our method outperforms known approaches to slide-stitching, and stitches WSIs resembling those produced by slide scanners.
Random reconstruction of three-dimensional (3D) digital rocks from two-dimensional (2D) slices is crucial for elucidating the microstructure of rocks and its effects on pore-scale flow in terms of numerical modeling, since massive samples are usually required to handle intrinsic uncertainties. Despite remarkable advances achieved by traditional process-based methods, statistical approaches and recently famous deep learning-based models, few works have focused on producing several kinds of rocks with one trained model and allowing the reconstructed samples to satisfy certain given properties, such as porosity. To fill this gap, we propose a new framework, named RockGPT, which is composed of VQ-VAE and conditional GPT, to synthesize 3D samples based on a single 2D slice from the perspective of video generation. The VQ-VAE is utilized to compress high-dimensional input video, i.e., the sequence of continuous rock slices, to discrete latent codes and reconstruct them. In order to obtain diverse reconstructions, the discrete latent codes are modeled using conditional GPT in an autoregressive manner, while incorporating conditional information from a given slice, rock type, and porosity. We conduct two experiments on five kinds of rocks, and the results demonstrate that RockGPT can produce different kinds of rocks with the same model, and the reconstructed samples can successfully meet certain specified porosities. In a broader sense, through leveraging the proposed conditioning scheme, RockGPT constitutes an effective way to build a general model to produce multiple kinds of rocks simultaneously that also satisfy user-defined properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا