ترغب بنشر مسار تعليمي؟ اضغط هنا

We study dynamics of two coupled periodically driven oscillators. The internal motion is separated off exactly to yield a nonlinear fourth-order equation describing inner dynamics. Periodic steady-state solutions of the fourth-order equation are dete rmined within the Krylov-Bogoliubov-Mitropolsky approach - we compute the amplitude profiles, which from mathematical point of view are algebraic curves. In the present paper we investigate metamorphoses of amplitude profiles induced by changes of control parameters near singular points of these curves. It follows that dynamics changes qualitatively in the neighbourhood of a singular point.
We study dynamics of two coupled periodically driven oscillators. An important example of such a system is a dynamic vibration absorber which consists of a small mass attached to the primary vibrating system of a large mass. Periodic solutions of the approximate effective equation (derived in our earlier papers) are determined within the Krylov-Bogoliubov-Mitropolsky approach to compute the amplitude profiles $A(Omega)$. In the present paper we investigate metamorphoses of the function $A(Omega)$ induced by changes of the control parameters in the case of 1:3 resonances.
We study dynamics of two coupled periodically driven oscillators. Important example of such a system is a dynamic vibration absorber which consists of a small mass attached to the primary vibrating system of a large mass. Periodic solutions of the approximate effective equation are determined within the Krylov-Bogoliubov-Mitropolsky approach to get the amplitude profiles $AOmega) $. Dependence of the amplitude $A$ of nonlinear resonances on the frequency $ Omega $ is much more complicated than in the case of one Duffing oscillator and hence new nonlinear phenomena are possible. In the present paper we study metamorphoses of the function $A(Omega) $ induced by changes of the control parameters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا